Research trends and hotspots in soil erosion from 1932 to 2013: a literature review

According to the publications related to soil erosion in the SCI database from 1932 to 2013, this study reveals scientific outputs, main subject categories, geographical distribution, and research hotspots in soil erosion studies, which may be considered a potential guide for future research. The annual number of publications showed an increasing trend over the past 80 years, with an especially rapid increase after 1990. Agriculture, environmental sciences and ecology, geology, and water resources were four major categories. Interdisciplinary research in soil erosion is becoming more common. The soil erosion research was mainly distributed across the USA and Europe before 2001 and boomed in China and Australia after 2001. USA was the largest contributor to global soil erosion research. China is focusing increasing attention on soil erosion research in the last decade, behind the USA. The Chinese Academy of Sciences is the most productive institute, followed by USDA Agricultural Research Service and Katholieke Universiteit Leuven. A keyword analysis confirmed keen interest in sediment yield, soil organic carbon, and phosphorus; indicated that rainfall runoff, climate change, agricultural tillage, and land use change were the leading causes of soil erosion; revealed the important role of GIS, remote sensing, model, and Cs-137 measurement; and found that the Loess Plateau of north-central China was an area of research focus. Through co-citation analysis, soil erosion research mainly focuses on three aspects: soil erosion simulation based on models, soil erosion estimation based on Cs-137 technique, and effects of soil erosion on the environment and agriculture.

[1]  Chongfa Cai,et al.  Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge Area of China , 2004 .

[2]  J. Poesen,et al.  The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. , 1998 .

[3]  J. Ben-Asher,et al.  Combating wind erosion of sandy soils and crop damage in the coastal deserts: Wind tunnel experiments , 2013 .

[4]  Yang-Yang Shi,et al.  Soil detachment by overland flow under different vegetation restoration models in the Loess Plateau of China , 2014 .

[5]  Jerry C. Ritchie,et al.  Application of Radioactive Fallout Cesium-137 for Measuring Soil Erosion and Sediment Accumulation Rates and Patterns: A Review , 1990 .

[6]  L. B. Owens,et al.  Large storm effects on total soil erosion , 1991 .

[7]  Toshio Koike,et al.  Global potential soil erosion with reference to land use and climate changes , 2003 .

[8]  S. D. Angima,et al.  Soil erosion prediction using RUSLE for central Kenyan highland conditions , 2003 .

[9]  Ulrich Schmoch,et al.  Are international co-publications an indicator for quality of scientific research? , 2008, Scientometrics.

[10]  A. Pritchard,et al.  Statistical bibliography or bibliometrics , 1969 .

[11]  Yan Wen,et al.  Estimation of soil erosion using RUSLE in Caijiamiao watershed, China , 2014, Natural Hazards.

[12]  Richard M. Cruse,et al.  The Soil Degradation Paradox: Compromising Our Resources When We Need Them the Most , 2015 .

[13]  Zheng Fen-li,et al.  The Retrospection and Prospect on Soil Erosion Research in China , 2008 .

[14]  Andrew A. Millward,et al.  Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed , 1999 .

[15]  S. M. de Jong,et al.  Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data , 1999 .

[16]  Jerry C. Ritchie,et al.  Estimating Soil Erosion from the Redistribution of Fallout 137Cs1 , 1974 .

[17]  Hanqin Tian,et al.  Climate and Land Use Controls on Soil Organic Carbon in the Loess Plateau Region of China , 2014, PloS one.

[18]  Xu Zhang,et al.  Global performance of traditional Chinese medicine over three decades , 2011, Scientometrics.

[19]  Muhammad Aqeel Ashraf,et al.  Land use changes and soil redistribution estimation using 137Cs in the tropical Bera Lake catchment, Malaysia. , 2013 .

[20]  Anton J. Nederhof,et al.  Bibliometric monitoring of research performance in the Social Sciences and the Humanities: A Review , 2006, Scientometrics.

[21]  A. D. Roo,et al.  LISEM: a single-event physically based hydrological and soil erosion model for drainage basins; I: theory, input and output , 1996 .

[22]  Desmond E. Walling,et al.  Improved Models for Estimating Soil Erosion Rates from Cesium‐137 Measurements , 1999 .

[23]  Sarah Garré,et al.  An Integrated Quantitative Method to Simultaneously Monitor Soil Erosion and Non-Point Source Pollution in an Intensive Agricultural Area , 2014 .

[24]  R. Lal,et al.  Soil erosion and the global carbon budget. , 2003, Environment international.

[25]  Z. Shia,et al.  Soil conservation planning at the small watershed level using RUSLE with GIS : a case study in the Three Gorge Area of China , 2003 .

[26]  Jean-Baptiste Paroissien,et al.  A method for modeling the effects of climate and land use changes on erosion and sustainability of soil in a Mediterranean watershed (Languedoc, France). , 2015, Journal of environmental management.

[27]  Guirui Yu,et al.  Effects of soil erosion and deposition on soil organic carbon dynamics at a sloping field in Black Soil region, Northeast China , 2010 .

[28]  G. R. Foster,et al.  RUSLE: Revised universal soil loss equation , 1991 .

[29]  Anjan Patel,et al.  Mountain erosion and mitigation: global state of art , 2012, Environmental Earth Sciences.

[30]  D. Pimentel,et al.  Environmental and Economic Costs of Soil Erosion and Conservation Benefits , 1995, Science.

[31]  Leo Stroosnijder,et al.  Soil erosion, soil fertility and crop yield on slow-forming terraces in the highlands of Buberuka, Rwanda , 2013 .

[32]  Peng Jian,et al.  Retraction Note: Assessment of soil erosion using RUSLE and GIS: a case study of the Maotiao River watershed, Guizhou Province, China , 2009, Environmental Earth Sciences.

[33]  Y. Ho,et al.  A review of published wetland research, 1991-2008: ecological engineering and ecosystem restoration. , 2010 .

[34]  D. Mullan,et al.  Soil erosion under the impacts of future climate change: assessing the statistical significance of future changes and the potential on-site and off-site problems , 2013 .

[35]  Tao Xu,et al.  A numerical analysis of rock creep-induced slide: a case study from Jiweishan Mountain, China , 2014, Environmental Earth Sciences.

[36]  Xingjian Liu,et al.  Global remote sensing research trends during 1991–2010: a bibliometric analysis , 2013, Scientometrics.

[37]  Kai Fechner,et al.  Main phases of soil genesis, erosion and anthropisation during the second half of the Holocene in Lorraine (Eastern France) , 2014 .

[38]  Qingpu Zhang,et al.  Mapping knowledge domains of Chinese digital library research output, 1994–2010 , 2011, Scientometrics.

[39]  Baoyuan Liu,et al.  Effects of soil erosion on soybean yield as estimated by simulating gradually eroded soil profiles , 2015 .

[40]  Chaomei Chen,et al.  Searching for intellectual turning points: Progressive knowledge domain visualization , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Geert Sterk,et al.  The effectiveness of soil conservation measures at a landscape scale in the West Usambara highlands, Tanzania , 2015 .

[42]  Hongyan Cai,et al.  An assessment of erosivity distribution and its influence on the effectiveness of land use conversion for reducing soil erosion in Jiangxi, China , 2015 .

[43]  W. H. Wischmeier Use and misuse of the universal soil loss equation. , 1976 .

[44]  X. J. Nie,et al.  Impacts of soil erosion on organic carbon and nutrient dynamics in an alpine grassland soil , 2013 .

[45]  Yang Li,et al.  Assessment of soil erosion using RUSLE and GIS: a case study of the Yangou watershed in the Loess Plateau, China , 2015, Environmental Earth Sciences.

[46]  Minh-Hoang Le,et al.  A faster numerical scheme for a coupled system modeling soil erosion and sediment transport , 2015 .

[47]  F. F. Pruski,et al.  Expected climate change impacts on soil erosion rates: A review , 2004 .

[48]  M. A. Nearinga,et al.  Modeling response of soil erosion and runoff to changes in precipitation and cover , 2005 .

[49]  G. R. Foster,et al.  A Process-Based Soil Erosion Model for USDA-Water Erosion Prediction Project Technology , 1989 .

[50]  魏屹东,et al.  Scientometrics , 2018, Encyclopedia of Big Data.

[51]  Dengsheng Lu,et al.  Mapping soil erosion risk in Rondônia, Brazilian Amazonia: using RUSLE, remote sensing and GIS , 2004 .

[52]  Xuegong Xu,et al.  Risk assessment of soil erosion in different rainfall scenarios by RUSLE model coupled with Information Diffusion Model: A case study of Bohai Rim, China , 2013 .

[53]  R. Lal,et al.  Soil degradation by erosion , 2001 .

[54]  Lei Cui,et al.  Integration of three visualization methods based on co-word analysis , 2011, Scientometrics.

[55]  O. E. Hays,et al.  Determining the Effect of the Degree of Slope on Runoff and Soil Erosion , 1931 .