Spherically symmetric random permutations

We consider random permutations which are spherically symmetric with respect to a metric on the symmetric group $S_n$ and are consistent as $n$ varies. The extreme infinitely spherically symmetric permutation-valued processes are identified for the Hamming, Kendall-tau and Caley metrics. The proofs in all three cases are based on a unified approach through stochastic monotonicity.

[1]  J. Pitman,et al.  Exchangeable Gibbs partitions and Stirling triangles , 2004, math/0412494.

[2]  D. Critchlow Metric Methods for Analyzing Partially Ranked Data , 1986 .

[3]  On the Zero-one Law for Exchangeable Events , 1979 .

[4]  O. Kallenberg Probabilistic Symmetries and Invariance Principles , 2005 .

[5]  David A. Freedman,et al.  Invariants Under Mixing Which Generalize de Finetti's Theorem: Continuous Time Parameter , 1963 .

[6]  David A. Freedman,et al.  Invariants Under Mixing which Generalize de Finetti's Theorem , 1962 .

[7]  A. Gnedin,et al.  On Λ-Coalescents with Dust Component , 2011, Journal of Applied Probability.

[8]  Nayantara Bhatnagar,et al.  Lengths of monotone subsequences in a Mallows permutation , 2013, 1306.3674.

[9]  S. Feng The Poisson-Dirichlet Distribution and Related Topics , 2010 .

[10]  A. Vershik,et al.  Harmonic analysis on the infinite symmetric group , 2003, math/0312270.

[11]  R. Arratia,et al.  Logarithmic Combinatorial Structures: A Probabilistic Approach , 2003 .

[12]  S. Berman Stationarity, isotropy and sphericity in ℓp , 1980 .

[13]  D. Handelman,et al.  Positive Polynomials and Time Dependent Integer-Valued Random Variables , 1991, Canadian Journal of Mathematics.

[14]  A. Gnedin On convergence and extensions of size-biased permutations , 1998 .

[15]  V. Gorin,et al.  Stochastic Monotonicity in Young Graph and Thoma Theorem , 2014, 1411.3307.

[16]  K. Petersen,et al.  Reinforced Random Walks and Adic Transformations , 2010 .

[17]  K. Goodearl Partially ordered abelian groups with interpolation , 1986 .

[18]  Mehdi Hassani,et al.  Derangements and Applications , 2003 .

[19]  Alexander Gnedin,et al.  The two-sided infinite extension of the Mallows model for random permutations , 2011, Adv. Appl. Math..

[20]  Alexander Gnedin,et al.  The boundary of the Eulerian number triangle , 2006 .

[21]  J. Pitman Combinatorial Stochastic Processes , 2006 .