Improved tripartite uncertainty relation with quantum memory

Uncertainty principle is a striking and fundamental feature in quantum mechanics distinguishing from classical mechanics. It offers an important lower bound to predict outcomes of two arbitrary incompatible observables measured on a particle. In quantum information theory, this uncertainty principle is popularly formulized in terms of entropy. Here, we present an improvement of tripartite quantum-memory-assisted entropic uncertainty relation. The uncertainty's lower bound is derived by considering mutual information and Holevo quantity. It shows that the bound derived by this method will be tighter than the lower bound in [Phys. Rev. Lett. 103, 020402 (2009)]. Furthermore, regarding a pair of mutual unbiased bases as the incompatibility, our bound will become extremely tight for the three-qubit $\emph{X}$-state system, completely coinciding with the entropy-based uncertainty, and can restore Renes ${\emph{et al.}}$'s bound with respect to arbitrary tripartite pure states. In addition, by applying our lower bound, one can attain the tighter bound of quantum secret key rate, which is of basic importance to enhance the security of quantum key distribution protocols.

[1]  Cambridge University Press Cambridge University Press , 2021 .

[2]  Dong Wang,et al.  Quantum‐Memory‐Assisted Entropic Uncertainty Relations , 2019, Annalen der Physik.

[3]  Guang-Can Guo,et al.  Experimental test of fine-grained entropic uncertainty relation in the presence of quantum memory , 2019, Scientific Reports.

[4]  Zhu Cao,et al.  Uncertainty equality with quantum memory and its experimental verification , 2019, npj Quantum Information.

[5]  Liu Ye,et al.  Characterization of dynamical measurement's uncertainty in a two-qubit system coupled with bosonic reservoirs , 2019, Physics Letters A.

[6]  G. Guo,et al.  Experimental test of the trade-off relation for quantum coherence , 2018, Physical Review A.

[7]  N. Brunner,et al.  Tight steering inequalities from generalized entropic uncertainty relations , 2018, Physical Review A.

[8]  Guang-Can Guo,et al.  Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination , 2018, 1802.09134.

[9]  Zhi-Xin Chen,et al.  Tight N-observable uncertainty relations and their experimental demonstrations , 2018, Scientific Reports.

[10]  Yunlong Xiao,et al.  Holevo bound of entropic uncertainty in Schwarzschild spacetime , 2017, The European Physical Journal C.

[11]  C. Macchiavello,et al.  Multipartite steering inequalities based on entropic uncertainty relations , 2017, 1711.09707.

[12]  Zhi-Xin Chen,et al.  Experimental investigation of multi-observable uncertainty relations , 2017, 1707.06044.

[13]  R. Werner,et al.  State-Independent Uncertainty Relations and Entanglement Detection in Noisy Systems. , 2017, Physical review letters.

[14]  Jun-Li Li,et al.  A Stronger Multi-observable Uncertainty Relation , 2017, Scientific Reports.

[15]  Xianqing Li-Jost,et al.  Weighted Uncertainty Relations , 2016, Scientific Reports.

[16]  S. Salimi,et al.  Tightening the entropic uncertainty bound in the presence of quantum memory , 2016, 1602.04296.

[17]  Y. Liu,et al.  Experimental Test of Heisenberg's Measurement Uncertainty Relation Based on Statistical Distances. , 2015, Physical review letters.

[18]  C. Branciard,et al.  Tight State-Independent Uncertainty Relations for Qubits , 2015, 1512.02383.

[19]  Patrick J. Coles,et al.  Entropic uncertainty relations and their applications , 2015, 1511.04857.

[20]  Yang Zhang,et al.  Entropic Uncertainty Relation and Information Exclusion Relation for multiple measurements in the presence of quantum memory , 2015, Scientific Reports.

[21]  Qiu-Cheng Song,et al.  Stronger Schrödinger-like uncertainty relations , 2015, 1504.01137.

[22]  Lukasz Rudnicki,et al.  Majorization approach to entropic uncertainty relations for coarse-grained observables , 2015, 1503.03682.

[23]  Jun-Li Li,et al.  Reformulating the Quantum Uncertainty Relation , 2015, Scientific Reports.

[24]  Heng Fan,et al.  Entropic uncertainty relations for multiple measurements , 2014, 1410.5177.

[25]  A. Pati,et al.  Stronger uncertainty relations for all incompatible observables. , 2014, Physical review letters.

[26]  K. Życzkowski,et al.  Strong majorization entropic uncertainty relations , 2014, 1402.0129.

[27]  G. Vallone,et al.  Quantum randomness certified by the uncertainty principle , 2014, 1401.7917.

[28]  S. Zozor,et al.  General entropy-like uncertainty relations in finite dimensions , 2013, 1311.5602.

[29]  Patrick J. Coles,et al.  Improved entropic uncertainty relations and information exclusion relations , 2013, 1307.4265.

[30]  Tanumoy Pramanik,et al.  Lower bound of quantum uncertainty from extractable classical information , 2013, Quantum Inf. Process..

[31]  Eric G. Cavalcanti,et al.  Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations , 2013, 1303.7432.

[32]  Ming‐Liang Hu,et al.  Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation , 2012, 1212.0319.

[33]  A. S. Majumdar,et al.  Fine-grained lower limit of entropic uncertainty in the presence of quantum memory. , 2012, Physical review letters.

[34]  Mark M. Wilde,et al.  Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory , 2012, 1204.3803.

[35]  M. Partovi Entanglement detection using majorization uncertainty bounds , 2012, 1204.1289.

[36]  G. Guo,et al.  Experimental investigation of the entanglement-assisted entropic uncertainty principle , 2010, 1012.0361.

[37]  R. Prevedel,et al.  Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement , 2010, 1012.0332.

[38]  B. Collins,et al.  Generating random density matrices , 2010, 1010.3570.

[39]  Yichen Huang,et al.  Entanglement criteria via concave-function uncertainty relations , 2010 .

[40]  R. Renner,et al.  The uncertainty principle in the presence of quantum memory , 2009, 0909.0950.

[41]  Shengjun Wu,et al.  Entropic uncertainty relation for mutually unbiased bases , 2008, 0811.2298.

[42]  Matthias Christandl,et al.  Postselection technique for quantum channels with applications to quantum cryptography. , 2008, Physical review letters.

[43]  J. Boileau,et al.  Conjectured strong complementary information tradeoff. , 2008, Physical review letters.

[44]  Renato Renner,et al.  Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. , 2007, Physical review letters.

[45]  S. Wehner,et al.  Entropic uncertainty relations and locking: tight bounds for mutually unbiased bases , 2006, quant-ph/0606244.

[46]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[47]  Shengjun Wu,et al.  What is quantum entanglement , 2003 .

[48]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[49]  Kraus Complementary observables and uncertainty relations. , 1987, Physical review. D, Particles and fields.

[50]  D. Deutsch Uncertainty in Quantum Measurements , 1983 .

[51]  H. P. Robertson The Uncertainty Principle , 1929 .

[52]  E. H. Kennard Zur Quantenmechanik einfacher Bewegungstypen , 1927 .

[53]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[54]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.