Radiosynthesis and initial evaluation of (18)F labeled nanocarrier composed of poly(L-lactic acid)-block-poly(sarcosine) amphiphilic polydepsipeptide.

[1]  Michael J Welch,et al.  Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. , 2012, Bioconjugate chemistry.

[2]  S. Vallabhajosula,et al.  A broad overview of positron emission tomography radiopharmaceuticals and clinical applications: what is new? , 2011, Seminars in nuclear medicine.

[3]  Jun Fang,et al.  The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. , 2011, Advanced drug delivery reviews.

[4]  Zhen Wang,et al.  Imaging in assessing hepatic and peritoneal metastases of gastric cancer: a systematic review , 2011, BMC gastroenterology.

[5]  S. Kimura,et al.  Preparation of peptide- and protein-based molecular assemblies and their utilizations as nanocarriers for tumor imaging , 2011 .

[6]  H. Tsukada,et al.  PET imaging of brain cancer with positron emitter-labeled liposomes. , 2011, International journal of pharmaceutics.

[7]  Hiroshi Maeda,et al.  Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. , 2010, Bioconjugate chemistry.

[8]  C. Hawker,et al.  The Advantages of Nanoparticles for PET , 2009, Journal of Nuclear Medicine.

[9]  Akira Makino,et al.  Near-infrared fluorescence tumor imaging using nanocarrier composed of poly(L-lactic acid)-block-poly(sarcosine) amphiphilic polydepsipeptide. , 2009, Biomaterials.

[10]  R Weissleder,et al.  Molecular imaging. , 2009, Radiology.

[11]  T Lammers,et al.  Tumour-targeted nanomedicines: principles and practice , 2008, British Journal of Cancer.

[12]  N. Harada,et al.  Novel amphiphilic probes for [18F]-radiolabeling preformed liposomes and determination of liposomal trafficking by positron emission tomography. , 2007, Journal of medicinal chemistry.

[13]  S. Kimura,et al.  Preparation of novel polymer assemblies, "lactosome", composed of Poly(L-lactic acid) and poly(sarcosine) , 2007 .

[14]  Scott C. Brown,et al.  Nanoparticles for bioimaging. , 2006, Advances in colloid and interface science.

[15]  M. Zalutsky,et al.  Synthesis of N-succinimidyl 4-[18F]fluorobenzoate, an agent for labeling proteins and peptides with 18F , 2006, Nature Protocols.

[16]  P. Dewachter,et al.  Anaphylaxis to macrogol 4000 after a parenteral corticoid injection , 2005, Allergy.

[17]  Hideo Tsukada,et al.  Potential of [18F]β‐CFT‐FE (2β‐carbomethoxy‐3β‐(4‐fluorophenyl)‐8‐(2‐[18F]fluoroethyl)nortropane) as a dopamine transporter ligand: A PET study in the conscious monkey brain , 2004 .

[18]  A. Steinbüchel,et al.  Microbial degradation of poly(amino acid)s. , 2004, Biomacromolecules.

[19]  Xuesi Chen,et al.  Probing the micellization of diblock and triblock copolymers of poly(l-lactide) and poly(ethylene glycol) in aqueous and NaCl salt solutions , 2004 .

[20]  D. Hammer,et al.  Effect of bilayer thickness on membrane bending rigidity. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[21]  Vladimir P Torchilin,et al.  Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[22]  Y. Sugiyama,et al.  Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. , 2003, Cancer research.

[23]  Harvey R Herschman,et al.  Molecular Imaging: Looking at Problems, Seeing Solutions , 2003, Science.

[24]  H. Maeda The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. , 2001, Advances in enzyme regulation.

[25]  稔 前田,et al.  6-デオキシ-6- [18F] フルオロ-L-アスコルビン酸: アスコルビン酸欠乏症ラットおよびRG-C6グリオーマ移植ラットにおける生体内分布 , 1995 .

[26]  S. Sasaki,et al.  Positron labeled antioxidants: synthesis and tissue biodistribution of 6-deoxy-6-[18F]fluoro-L-ascorbic acid. , 1992, International journal of radiation applications and instrumentation. Part A, Applied radiation and isotopes.

[27]  H. Maeda,et al.  A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. , 1986, Cancer research.

[28]  Akira Makino,et al.  Near-infrared fluorescent labeled peptosome for application to cancer imaging. , 2008, Bioconjugate chemistry.

[29]  K. Bouchelouche,et al.  Positron emission tomography and positron emission tomography/computerized tomography of urological malignancies: an update review. , 2008, The Journal of urology.

[30]  Wenbin Zeng,et al.  Facile synthesis of N‐succinimidyl 4‐[18F]fluorobenzoate ([18F]SFB) for protein labeling , 2008 .

[31]  Kazunori Kataoka,et al.  Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. , 2005, Bioconjugate chemistry.

[32]  N. Harada,et al.  Potential of [(18)F]beta-CFT-FE (2beta-carbomethoxy-3beta-(4-fluorophenyl)-8-(2-[(18)F]fluoroethyl)nortropane) as a dopamine transporter ligand: A PET study in the conscious monkey brain. , 2004, Synapse.

[33]  山本 文彦,et al.  6-Deoxy-6-(18F)fluoro-L-ascorbic Acid: Tissue Biodistribution in Ascorbic Acid-deficiency and RG-C6 Glioma Bearing Rats. , 1995 .