Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films

Atomic Layer Heterostructures—More Is More The isolation of stable layers of various materials, only an atom or several atoms thick, has provided the opportunity to fabricate devices with novel functionality and to probe fundamental physics. Britnell et al. (p. 1311, published online 2 May; see the Perspective by Hamm and Hess) sandwiched a single layer of the transition metal dichalcogenide WS2 between two sheets of graphene. The photocurrent response of the heterostructure device was enhanced, compared to that of the bare layer of WS2. The prospect of combining single or several-atom-thick layers into heterostructures should help to develop materials with a wide range of properties. Transition metal dichalcogenides sandwiched between two layers of graphene produce an enhanced photoresponse. [Also see Perspective by Hamm and Hess] The isolation of various two-dimensional (2D) materials, and the possibility to combine them in vertical stacks, has created a new paradigm in materials science: heterostructures based on 2D crystals. Such a concept has already proven fruitful for a number of electronic applications in the area of ultrathin and flexible devices. Here, we expand the range of such structures to photoactive ones by using semiconducting transition metal dichalcogenides (TMDCs)/graphene stacks. Van Hove singularities in the electronic density of states of TMDC guarantees enhanced light-matter interactions, leading to enhanced photon absorption and electron-hole creation (which are collected in transparent graphene electrodes). This allows development of extremely efficient flexible photovoltaic devices with photoresponsivity above 0.1 ampere per watt (corresponding to an external quantum efficiency of above 30%).

[1]  K. Novoselov,et al.  Doping mechanisms in graphene-MoS2 hybrids , 2013, 1304.2236.

[2]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[3]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[4]  R F Oulton,et al.  Active nanoplasmonic metamaterials. , 2012, Nature materials.

[5]  Sarah J. Haigh,et al.  Graphene-based heterostructures and superlattices: Cross-sectional imaging of individual layers and buried interfaces , 2012 .

[6]  M. I. Katsnelson,et al.  Strong Coulomb drag and broken symmetry in double-layer graphene , 2012, Nature Physics.

[7]  Ashok Kumar,et al.  Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors , 2012 .

[8]  Andres Castellanos-Gomez,et al.  Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2 , 2012, Nanoscale Research Letters.

[9]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[10]  P. Klang,et al.  Microcavity-Integrated Graphene Photodetector , 2011, Nano letters.

[11]  A. Geim Random walk to graphene , 2011 .

[12]  K. Novoselov,et al.  Strong plasmonic enhancement of photovoltage in graphene. , 2011, Nature communications.

[13]  Andre K. Geim,et al.  Nobel Lecture: Random walk to graphene* , 2011 .

[14]  K. Novoselov Nobel Lecture: Graphene: Materials in the Flatland , 2011 .

[15]  S. V. Morozov,et al.  Tunable metal-insulator transition in double-layer graphene heterostructures , 2011, 1107.0115.

[16]  K. Novoselov,et al.  Micrometer-scale ballistic transport in encapsulated graphene at room temperature. , 2011, Nano letters.

[17]  Kostya S. Novoselov,et al.  Graphene: Materials in the flatland , 2011 .

[18]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[19]  K. Novoselov,et al.  Interaction between metal and graphene: dependence on the layer number of graphene. , 2011, ACS nano.

[20]  K. L. Shepard,et al.  Multicomponent fractional quantum Hall effect in graphene , 2010, 1010.1179.

[21]  K. Novoselov,et al.  Hunting for monolayer boron nitride: optical and Raman signatures. , 2010, Small.

[22]  Elefterios Lidorikis,et al.  Surface-enhanced Raman spectroscopy of graphene. , 2010, ACS nano.

[23]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[24]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[25]  S. Bae,et al.  1 30-Inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes , 2009 .

[26]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[27]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  Vincenzo Barone,et al.  Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases , 2009, J. Comput. Chem..

[29]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[30]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[31]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[32]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[33]  Michael S. Fuhrer,et al.  Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides , 2007 .

[34]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[35]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Seiber Status and Prospects , 2005 .

[37]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[38]  R Saito,et al.  Single nanotube Raman spectroscopy. , 2002, Accounts of chemical research.

[39]  A. Neto Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides. , 2000, cond-mat/0012147.

[40]  Sidney R. Cohen,et al.  The tribological behavior of type II textured MX2 (M = Mo, W; X = S, Se) films , 1998 .

[41]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[42]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[43]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[44]  C. Ballif,et al.  Preparation and characterization of highly oriented, photoconducting WS2 thin films , 1996 .

[45]  V. Sobolev Optical spectra of molybdenum disulfide in the region between 1 and 30 eV , 1994 .

[46]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[47]  P. D. Fleischauer,et al.  Applications of solid lubricant films in spacecraft , 1992 .

[48]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[49]  T. W. Halstead,et al.  Status and Prospects , 1984 .

[50]  B. Parkinson,et al.  Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides , 1982 .

[51]  W. M. Sears,et al.  Photovoltaic effect and optical absorption in MoS2 , 1982 .

[52]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[53]  L. Mattheiss Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. , 1973 .