X-shooter observations of the gravitational lens system CASSOWARY 5★
暂无分享,去创建一个
[1] Astronomy,et al. A study of interstellar gas and stars in the gravitationally lensed galaxy 'the Cosmic Eye' from rest-frame ultraviolet spectroscopy , 2009, 0910.0840.
[2] European Southern Observatory,et al. CASSOWARY 20: a wide separation Einstein Cross identified with the X-shooter spectrograph , 2009, Monthly Notices of the Royal Astronomical Society.
[3] M. Asplund,et al. The chemical composition of the Sun , 2009, 0909.0948.
[4] M. Pettini,et al. The ultraviolet spectrum of the gravitationally lensed galaxy ‘the Cosmic Horseshoe’: a close-up of a star-forming galaxy at z∼ 2 , 2009, 0906.2412.
[5] D. Tucker,et al. REST-FRAME OPTICAL SPECTRA OF THREE STRONGLY LENSED GALAXIES AT z ∼ 2 , 2009, 0906.2197.
[6] Marcia J. Rieke,et al. TURNING BACK THE CLOCK: INFERRING THE HISTORY OF THE EIGHT O'CLOCK ARC , 2009, 0905.1122.
[7] Durham,et al. DETECTION OF FAR-INFRARED AND POLYCYCLIC AROMATIC HYDROCARBON EMISSION FROM THE COSMIC EYE: PROBING THE DUST AND STAR FORMATION OF LYMAN BREAK GALAXIES , 2009, 0904.1742.
[8] O. I. Wong,et al. EVIDENCE FOR A NONUNIFORM INITIAL MASS FUNCTION IN THE LOCAL UNIVERSE , 2009, 0902.0384.
[9] M. Nonino,et al. SPECTROSCOPIC OBSERVATIONS OF LYMAN BREAK GALAXIES AT REDSHIFTS ∼4, 5, AND 6 IN THE GOODS-SOUTH FIELD , 2009, 0901.4364.
[10] J. Brinchmann,et al. Physical properties of galaxies and their evolution in the VIMOS VLT Deep Survey - I. The evolution of the mass-metallicity relation up to z ~ 0.9 , 2008, 0811.2053.
[11] D. Fabbian,et al. The C/O ratio at low metallicity: constraints on early chemical evolution from observations of Galactic halo stars , 2008, 0810.0281.
[12] Jeffrey M. Kubo,et al. DISCOVERY OF A VERY BRIGHT, STRONGLY LENSED z = 2 GALAXY IN THE SDSS DR5 , 2008, 0809.4475.
[13] Cambridge,et al. Two new large-separation gravitational lenses from SDSS , 2008, 0806.4188.
[14] UCOLick,et al. UBIQUITOUS OUTFLOWS IN DEEP2 SPECTRA OF STAR-FORMING GALAXIES AT z = 1.4 , 2008, 0804.4686.
[15] A. M. Swinbank,et al. The formation and assembly of a typical star-forming galaxy at redshift z ≈ 3 , 2008, Nature.
[16] R. Chary,et al. Spitzer Observations of the z = 2.73 Lensed Lyman Break Galaxy: MS 1512–cB58 , 2008, 0808.2465.
[17] N. Evans,et al. Lensing by binary galaxies modelled as isothermal spheres , 2008, 0804.3743.
[18] D. Valls-Gabaud,et al. Medium‐resolution spectroscopy of FORJ0332−3557: probing the interstellar medium and stellar populations of a lensed Lyman‐break galaxy at z= 3.77★ , 2008, 0803.0679.
[19] L. Kewley,et al. Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.
[20] J. Brinchmann,et al. Metallicities and Physical Conditions in Star-forming Galaxies at z ~ 1.0-1.5 , 2008, 0801.1670.
[21] Leiden,et al. New insights into the stellar content and physical conditions of star-forming galaxies at z = 2-3 from spectral modelling , 2008, 0801.1678.
[22] C. Steidel,et al. C, N, O abundances in the most metal-poor damped Lyman alpha systems★ , 2007, 0712.1829.
[23] M. Pettini. The Metal-Rich Universe: High metallicities at high redshifts , 2008 .
[24] G. Meynet,et al. The Metal-Rich Universe: Abundances in the Galaxy: field stars , 2008 .
[25] A. Cimatti,et al. NICMOS measurements of the near-infrared background , 2007, 0712.2880.
[26] Sergey E. Koposov,et al. The Cosmic Horseshoe: Discovery of an Einstein Ring around a Giant Luminous Red Galaxy , 2007, 0706.2326.
[27] A. M. Swinbank,et al. A Detailed Study of Gas and Star Formation in a Highly Magnified Lyman Break Galaxy at z = 3.07 , 2007, 0705.1721.
[28] Birmingham,et al. Resolved Spectroscopy of a Gravitationally Lensed L^{*} Lyman Break Galaxy at z˜5: Evidence for a Starburst-Driven, Galactic-Scale Bi-Polar Outflow , 2007, astro-ph/0701221.
[29] J. Frieman,et al. The 8 O’Clock Arc: A Serendipitous Discovery of a Strongly Lensed Lyman Break Galaxy in the SDSS DR4 Imaging Data , 2006, astro-ph/0611138.
[30] R. Peletier,et al. Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters , 2006, astro-ph/0611618.
[31] Filippo Maria Zerbi,et al. X-shooter UV- to K-band intermediate-resolution high-efficiency spectrograph for the VLT: status report at the final design review , 2006, SPIE Astronomical Telescopes + Instrumentation.
[32] C. Steidel,et al. The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.
[33] Edward J. Wollack,et al. Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.
[34] C. Steidel,et al. The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.
[35] Kyiv,et al. The chemical composition of metal-poor emission-line galaxies in the Data Release 3 of the Sloan Digital Sky Survey , 2005, astro-ph/0511644.
[36] UCLA,et al. The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies , 2005, astro-ph/0511453.
[37] R. Nichol,et al. A Search for the Most Massive Galaxies: Double Trouble? , 2005, astro-ph/0510696.
[38] P. Hewett,et al. The discovery of two new galaxy-galaxy lenses from the SDSS , 2005, astro-ph/0508430.
[39] H.-W. Chen,et al. ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .
[40] A. Jaunsen,et al. Discovery of a high-redshift Einstein ring , 2005, astro-ph/0504585.
[41] M. Ruiz,et al. A reappraisal of the chemical composition of the Orion nebula based on Very Large Telescope echelle spectrophotometry , 2004, astro-ph/0408249.
[42] L. Kewley,et al. Metallicities of 0.3 < z < 1.0 Galaxies in the GOODS-North Field , 2004, astro-ph/0408128.
[43] J. Brinkmann,et al. The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.
[44] M. Pettini,et al. [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.
[45] Eric Emsellem,et al. Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.
[46] M. Asplund,et al. The Evolution of the C/O Ratio in Metal-poor Halo Stars , 2003, astro-ph/0310472.
[47] Timothy M. Heckman,et al. The host galaxies of active galactic nuclei , 2003 .
[48] G. Bruzual,et al. Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.
[49] G. Chabrier. Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.
[50] J. Brinkmann,et al. The Host Galaxies of AGN , 2003, astro-ph/0304239.
[51] D. Kelson. Optimal Techniques in Two‐dimensional Spectroscopy: Background Subtraction for the 21st Century , 2003, astro-ph/0303507.
[52] M. Pettini,et al. Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.
[53] R. Genzel,et al. Molecular Gas in the Lensed Lyman Break Galaxy cB58 , 2002, astro-ph/0312099.
[54] J. Kneib,et al. Physical properties of two low-luminosity z 1.9 galaxies behind the lensing cluster AC 114 ⋆ , 2002, astro-ph/0210547.
[55] C. Steidel,et al. New Observations of the Interstellar Medium in the Lyman Break Galaxy MS 1512–cB58 , 2001, astro-ph/0110637.
[56] L. Kewley,et al. Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.
[57] C. Leitherer,et al. Ultraviolet Line Spectra of Metal-poor Star-forming Galaxies , 2000, astro-ph/0012358.
[58] Walter A. Siegmund,et al. The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.
[59] J. Graham,et al. The Rest-Frame Optical Spectrum of MS 1512–cB58 , 2000, The Astrophysical journal.
[60] A. Kinney,et al. The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.
[61] M. Giavalisco,et al. The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.
[62] R. Terlevich,et al. Carbon in Spiral Galaxies from HUBBLE SPACE TELESCOPE Spectroscopy , 1998, astro-ph/9810026.
[63] Jr.,et al. STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.
[64] M. Edmunds,et al. N/O IN SPIRAL DISCS : A NEW ALGORITHM FOR ABUNDANCE DETERMINATIONS , 1996 .
[65] R. Shaw,et al. SOFTWARE FOR THE ANALYSIS OF EMISSION LINE NEBULAE , 1995 .
[66] E.Terlevich,et al. The evolution of C/O in dwarf galaxies from Hubble Space Telescope FOS observations , 1994, astro-ph/9411011.
[67] R. Terlevich,et al. The Primordial helium abundance from observations of extragalactic H-II regions , 1992 .
[68] B. Savage,et al. The analysis of apparent optical depth profiles for interstellar absorption lines , 1991 .
[69] D. Osterbrock,et al. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .
[70] Lawrence H. Aller,et al. Physics of thermal gaseous nebulae , 1984 .
[71] J. Baldwin,et al. ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .
[72] Bernard E. J. Pagel,et al. On the composition of H II regions in southern galaxies – I. NGC 300 and 1365 , 1979 .
[73] E. Salpeter. The Luminosity function and stellar evolution , 1955 .