X-shooter observations of the gravitational lens system CASSOWARY 5★

We confirm an eighth gravitational lens system in the CAmbridge Sloan Survey Of Wide ARcs in the skY (CASSOWARY) catalogue. Exploratory observations with the X-shooter spectrograph on the Very Large Telescope of the European Southern Observatory show the system CASSOWARY 5 (CSWA 5) to consist of at least three images of a blue star-forming galaxy at z = 1.0686, lensed by an apparent foreground group of red galaxies, one of which is at z = 0.3877. The lensed galaxy exhibits a rich spectrum with broad interstellar absorption lines and a wealth of nebular emission lines. Preliminary analysis of these features shows the galaxy to be young, with an age of ~25-50 Myr. With a star formation rate of ~20 M ⊙ yr -1 , the galaxy has already assembled a stellar mass M * ~ 3 × 10 9 M ⊙ and reached half-solar metallicity. Its blue spectral energy distribution and Balmer line ratios suggest negligible internal dust extinction. A more in-depth analysis of the properties of this system is currently hampered by the lack of a viable lensing model. However, it is already clear that CSWA 5 shares many of its physical characteristics with the general population of UV-selected galaxies at redshifts z = 1-3, motivating further study of both the source and the foreground mass concentration responsible for the gravitational lensing.

[1]  Astronomy,et al.  A study of interstellar gas and stars in the gravitationally lensed galaxy 'the Cosmic Eye' from rest-frame ultraviolet spectroscopy , 2009, 0910.0840.

[2]  European Southern Observatory,et al.  CASSOWARY 20: a wide separation Einstein Cross identified with the X-shooter spectrograph , 2009, Monthly Notices of the Royal Astronomical Society.

[3]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[4]  M. Pettini,et al.  The ultraviolet spectrum of the gravitationally lensed galaxy ‘the Cosmic Horseshoe’: a close-up of a star-forming galaxy at z∼ 2 , 2009, 0906.2412.

[5]  D. Tucker,et al.  REST-FRAME OPTICAL SPECTRA OF THREE STRONGLY LENSED GALAXIES AT z ∼ 2 , 2009, 0906.2197.

[6]  Marcia J. Rieke,et al.  TURNING BACK THE CLOCK: INFERRING THE HISTORY OF THE EIGHT O'CLOCK ARC , 2009, 0905.1122.

[7]  Durham,et al.  DETECTION OF FAR-INFRARED AND POLYCYCLIC AROMATIC HYDROCARBON EMISSION FROM THE COSMIC EYE: PROBING THE DUST AND STAR FORMATION OF LYMAN BREAK GALAXIES , 2009, 0904.1742.

[8]  O. I. Wong,et al.  EVIDENCE FOR A NONUNIFORM INITIAL MASS FUNCTION IN THE LOCAL UNIVERSE , 2009, 0902.0384.

[9]  M. Nonino,et al.  SPECTROSCOPIC OBSERVATIONS OF LYMAN BREAK GALAXIES AT REDSHIFTS ∼4, 5, AND 6 IN THE GOODS-SOUTH FIELD , 2009, 0901.4364.

[10]  J. Brinchmann,et al.  Physical properties of galaxies and their evolution in the VIMOS VLT Deep Survey - I. The evolution of the mass-metallicity relation up to z ~ 0.9 , 2008, 0811.2053.

[11]  D. Fabbian,et al.  The C/O ratio at low metallicity: constraints on early chemical evolution from observations of Galactic halo stars , 2008, 0810.0281.

[12]  Jeffrey M. Kubo,et al.  DISCOVERY OF A VERY BRIGHT, STRONGLY LENSED z = 2 GALAXY IN THE SDSS DR5 , 2008, 0809.4475.

[13]  Cambridge,et al.  Two new large-separation gravitational lenses from SDSS , 2008, 0806.4188.

[14]  UCOLick,et al.  UBIQUITOUS OUTFLOWS IN DEEP2 SPECTRA OF STAR-FORMING GALAXIES AT z = 1.4 , 2008, 0804.4686.

[15]  A. M. Swinbank,et al.  The formation and assembly of a typical star-forming galaxy at redshift z ≈ 3 , 2008, Nature.

[16]  R. Chary,et al.  Spitzer Observations of the z = 2.73 Lensed Lyman Break Galaxy: MS 1512–cB58 , 2008, 0808.2465.

[17]  N. Evans,et al.  Lensing by binary galaxies modelled as isothermal spheres , 2008, 0804.3743.

[18]  D. Valls-Gabaud,et al.  Medium‐resolution spectroscopy of FORJ0332−3557: probing the interstellar medium and stellar populations of a lensed Lyman‐break galaxy at z= 3.77★ , 2008, 0803.0679.

[19]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[20]  J. Brinchmann,et al.  Metallicities and Physical Conditions in Star-forming Galaxies at z ~ 1.0-1.5 , 2008, 0801.1670.

[21]  Leiden,et al.  New insights into the stellar content and physical conditions of star-forming galaxies at z = 2-3 from spectral modelling , 2008, 0801.1678.

[22]  C. Steidel,et al.  C, N, O abundances in the most metal-poor damped Lyman alpha systems★ , 2007, 0712.1829.

[23]  M. Pettini The Metal-Rich Universe: High metallicities at high redshifts , 2008 .

[24]  G. Meynet,et al.  The Metal-Rich Universe: Abundances in the Galaxy: field stars , 2008 .

[25]  A. Cimatti,et al.  NICMOS measurements of the near-infrared background , 2007, 0712.2880.

[26]  Sergey E. Koposov,et al.  The Cosmic Horseshoe: Discovery of an Einstein Ring around a Giant Luminous Red Galaxy , 2007, 0706.2326.

[27]  A. M. Swinbank,et al.  A Detailed Study of Gas and Star Formation in a Highly Magnified Lyman Break Galaxy at z = 3.07 , 2007, 0705.1721.

[28]  Birmingham,et al.  Resolved Spectroscopy of a Gravitationally Lensed L^{*} Lyman Break Galaxy at z˜5: Evidence for a Starburst-Driven, Galactic-Scale Bi-Polar Outflow , 2007, astro-ph/0701221.

[29]  J. Frieman,et al.  The 8 O’Clock Arc: A Serendipitous Discovery of a Strongly Lensed Lyman Break Galaxy in the SDSS DR4 Imaging Data , 2006, astro-ph/0611138.

[30]  R. Peletier,et al.  Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters , 2006, astro-ph/0611618.

[31]  Filippo Maria Zerbi,et al.  X-shooter UV- to K-band intermediate-resolution high-efficiency spectrograph for the VLT: status report at the final design review , 2006, SPIE Astronomical Telescopes + Instrumentation.

[32]  C. Steidel,et al.  The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.

[33]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[34]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[35]  Kyiv,et al.  The chemical composition of metal-poor emission-line galaxies in the Data Release 3 of the Sloan Digital Sky Survey , 2005, astro-ph/0511644.

[36]  UCLA,et al.  The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies , 2005, astro-ph/0511453.

[37]  R. Nichol,et al.  A Search for the Most Massive Galaxies: Double Trouble? , 2005, astro-ph/0510696.

[38]  P. Hewett,et al.  The discovery of two new galaxy-galaxy lenses from the SDSS , 2005, astro-ph/0508430.

[39]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[40]  A. Jaunsen,et al.  Discovery of a high-redshift Einstein ring , 2005, astro-ph/0504585.

[41]  M. Ruiz,et al.  A reappraisal of the chemical composition of the Orion nebula based on Very Large Telescope echelle spectrophotometry , 2004, astro-ph/0408249.

[42]  L. Kewley,et al.  Metallicities of 0.3 < z < 1.0 Galaxies in the GOODS-North Field , 2004, astro-ph/0408128.

[43]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[44]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[45]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[46]  M. Asplund,et al.  The Evolution of the C/O Ratio in Metal-poor Halo Stars , 2003, astro-ph/0310472.

[47]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[48]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[49]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[50]  J. Brinkmann,et al.  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[51]  D. Kelson Optimal Techniques in Two‐dimensional Spectroscopy: Background Subtraction for the 21st Century , 2003, astro-ph/0303507.

[52]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[53]  R. Genzel,et al.  Molecular Gas in the Lensed Lyman Break Galaxy cB58 , 2002, astro-ph/0312099.

[54]  J. Kneib,et al.  Physical properties of two low-luminosity z 1.9 galaxies behind the lensing cluster AC 114 ⋆ , 2002, astro-ph/0210547.

[55]  C. Steidel,et al.  New Observations of the Interstellar Medium in the Lyman Break Galaxy MS 1512–cB58 , 2001, astro-ph/0110637.

[56]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[57]  C. Leitherer,et al.  Ultraviolet Line Spectra of Metal-poor Star-forming Galaxies , 2000, astro-ph/0012358.

[58]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[59]  J. Graham,et al.  The Rest-Frame Optical Spectrum of MS 1512–cB58 , 2000, The Astrophysical journal.

[60]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[61]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.

[62]  R. Terlevich,et al.  Carbon in Spiral Galaxies from HUBBLE SPACE TELESCOPE Spectroscopy , 1998, astro-ph/9810026.

[63]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[64]  M. Edmunds,et al.  N/O IN SPIRAL DISCS : A NEW ALGORITHM FOR ABUNDANCE DETERMINATIONS , 1996 .

[65]  R. Shaw,et al.  SOFTWARE FOR THE ANALYSIS OF EMISSION LINE NEBULAE , 1995 .

[66]  E.Terlevich,et al.  The evolution of C/O in dwarf galaxies from Hubble Space Telescope FOS observations , 1994, astro-ph/9411011.

[67]  R. Terlevich,et al.  The Primordial helium abundance from observations of extragalactic H-II regions , 1992 .

[68]  B. Savage,et al.  The analysis of apparent optical depth profiles for interstellar absorption lines , 1991 .

[69]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[70]  Lawrence H. Aller,et al.  Physics of thermal gaseous nebulae , 1984 .

[71]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[72]  Bernard E. J. Pagel,et al.  On the composition of H II regions in southern galaxies – I. NGC 300 and 1365 , 1979 .

[73]  E. Salpeter The Luminosity function and stellar evolution , 1955 .