A Thermodynamical Selection-Based Discrete Differential Evolution for the 0-1 Knapsack Problem

Many problems in business and engineering can be modeled as 0-1 knapsack problems. However, the 0-1 knapsack problem is one of the classical NP-hard problems. Therefore, it is valuable to develop effective and efficient algorithms for solving 0-1 knapsack problems. Aiming at the drawbacks of the selection operator in the traditional differential evolution (DE), we present a novel discrete differential evolution (TDDE) for solving 0-1 knapsack problem. In TDDE, an enhanced selection operator inspired by the principle of the minimal free energy in thermodynamics is employed, trying to balance the conflict between the selective pressure and the diversity of population to some degree. An experimental study is conducted on twenty 0-1 knapsack test instances. The comparison results show that TDDE can gain competitive performance on the majority of the test instances.

[1]  Xin-She Yang,et al.  Flower pollination algorithm: A novel approach for multiobjective optimization , 2014, ArXiv.

[2]  Ponnuthurai N. Suganthan,et al.  A novel hybrid discrete differential evolution algorithm for blocking flow shop scheduling problems , 2010, Comput. Oper. Res..

[3]  Qingfu Zhang,et al.  Enhancing the search ability of differential evolution through orthogonal crossover , 2012, Inf. Sci..

[4]  Rajeev Kumar,et al.  Assessing solution quality of biobjective 0-1 knapsack problem using evolutionary and heuristic algorithms , 2010, Appl. Soft Comput..

[5]  I. Mazin,et al.  Theory , 1934 .

[6]  Hui Li,et al.  Enhanced Differential Evolution With Adaptive Strategies for Numerical Optimization , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  Francisco Herrera,et al.  Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power , 2010, Inf. Sci..

[8]  Jun Zhang,et al.  Orthogonal Learning Particle Swarm Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[9]  Zhijian Wu,et al.  Component Thermodynamical Selection Based Gene Expression Programming for Function Finding , 2014 .

[10]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[11]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[12]  Gwo-Ruey Yu,et al.  An adaptive population multi-objective quantum-inspired evolutionary algorithm for multi-objective 0/1 knapsack problems , 2013, Inf. Sci..

[13]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[14]  F. Farokhi,et al.  A novel artificial bee colony algorithm for the knapsack problem , 2012, 2012 International Symposium on Innovations in Intelligent Systems and Applications.

[15]  José António Tenreiro Machado,et al.  Entropy Diversity in Multi-Objective Particle Swarm Optimization , 2013, Entropy.

[16]  Abdesslem Layeb,et al.  A novel quantum inspired cuckoo search for knapsack problems , 2011, Int. J. Bio Inspired Comput..

[17]  Hui Wang,et al.  Gaussian Bare-Bones Differential Evolution , 2013, IEEE Transactions on Cybernetics.

[18]  S. García,et al.  An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons , 2008 .

[19]  Xin-She Yang,et al.  Multiobjective cuckoo search for design optimization , 2013, Comput. Oper. Res..

[20]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[21]  Liang Gao,et al.  A differential evolution algorithm with self-adapting strategy and control parameters , 2011, Comput. Oper. Res..

[22]  Li Yuan,et al.  Improving the Computational Efficiency of Thermodynamical Genetic Algorithms , 2008 .

[23]  Jiannong Cao,et al.  Multiple Populations for Multiple Objectives: A Coevolutionary Technique for Solving Multiobjective Optimization Problems , 2013, IEEE Transactions on Cybernetics.

[24]  Jung-Ho Lee,et al.  Determination of Optimal Water Quality Monitoring Points in Sewer Systems using Entropy Theory , 2013, Entropy.

[25]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[26]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[27]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[28]  Hai Zhang,et al.  Binary Encoding Differential Evolution with Application to Combinatorial Optimization Problem , 2013 .

[29]  Wenjun Wang,et al.  Multi-strategy ensemble artificial bee colony algorithm for large-scale production scheduling problem , 2015 .

[30]  N. Mori,et al.  A thermodynamical selection rule for the genetic algorithm , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[31]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[32]  S. C-Y,et al.  Improving the Computational Efficiency of Thermodynamical Genetic Algorithms , 2008 .

[33]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[34]  尚荣华,et al.  Quantum Immune Clonal Selection Algorithm for Multi-objective 0/1 Knapsack Problems , 2010 .

[35]  Siew Chin Neoh,et al.  A GA-PSO layered encoding evolutionary approach to 0/1 knapsack optimization , 2010 .

[36]  Yuanxiang Li,et al.  A Steep Thermodynamical Selection Rule for Evolutionary Algorithms , 2007, International Conference on Computational Science.

[37]  Wei-Qin Ying Improving the Computational Efficiency of Thermodynamical Genetic Algorithms: Improving the Computational Efficiency of Thermodynamical Genetic Algorithms , 2008 .

[38]  Zhijian Wu,et al.  Enhancing particle swarm optimization using generalized opposition-based learning , 2011, Inf. Sci..

[39]  Yao-Hsin Chou,et al.  Quantum-inspired tabu search algorithm for solving 0/1 knapsack problems , 2011, GECCO '11.

[40]  Simon Fong,et al.  Bat Algorithm is Better Than Intermittent Search Strategy , 2014, J. Multiple Valued Log. Soft Comput..

[41]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[42]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[43]  Amit Konar,et al.  Differential Evolution Using a Neighborhood-Based Mutation Operator , 2009, IEEE Transactions on Evolutionary Computation.

[44]  Salim Chikhi,et al.  Solving 0-1 knapsack problems by a discrete binary version of cuckoo search algorithm , 2012, Int. J. Bio Inspired Comput..

[45]  Yuanxiang Li,et al.  An Improved Thermodynamics Evolutionary Algorithm Based on the Minimal Free Energy , 2010, ICSI.

[46]  Zhihua Cui,et al.  Social Emotional Optimization Algorithm with Gaussian Distribution for Optimal Coverage Problem , 2013 .

[47]  Hanxiao Shi,et al.  Solution to 0/1 Knapsack Problem Based on Improved Ant Colony Algorithm , 2006, 2006 IEEE International Conference on Information Acquisition.

[48]  Ville Tirronen,et al.  Recent advances in differential evolution: a survey and experimental analysis , 2010, Artificial Intelligence Review.

[49]  Kusum Deep,et al.  A Modified Binary Particle Swarm Optimization for Knapsack Problems , 2012, Appl. Math. Comput..

[50]  Héctor Pomares,et al.  Fast Feature Selection in a GPU Cluster Using the Delta Test , 2014, Entropy.

[51]  Tung Khac Truong,et al.  Chemical reaction optimization with greedy strategy for the 0-1 knapsack problem , 2013, Appl. Soft Comput..

[52]  Hui Wang,et al.  Diversity enhanced particle swarm optimization with neighborhood search , 2013, Inf. Sci..

[53]  Jianhua Wu,et al.  Solving 0-1 knapsack problem by a novel global harmony search algorithm , 2011, Appl. Soft Comput..

[54]  Sankaran Mahadevan,et al.  Solving 0-1 knapsack problems based on amoeboid organism algorithm , 2013, Appl. Math. Comput..

[55]  Ujjwal Maulik,et al.  Incorporating ϵ-dominance in AMOSA: Application to multiobjective 0/1 knapsack problem and clustering gene expression data , 2013, Appl. Soft Comput..

[56]  Abdesslem Layeb,et al.  A hybrid quantum inspired harmony search algorithm for 0-1 optimization problems , 2013, J. Comput. Appl. Math..

[57]  Abdel Lisser,et al.  Upper bounds for the 0-1 stochastic knapsack problem and a B&B algorithm , 2010, Ann. Oper. Res..