Contributions of the Largely Transonic Dynamics Tunnel to Rotorcraft Technology and Development

A historical account of the contributions of the Langley Transonic Dynamics Tunnel (TDT) to rotorcraft technology and development since the tunnel''s inception in 1960 is presented. The paper begins with a summary of the major characteristics of the TDT and a description of the unique capability offered by the TDT for testing aeroleastic models by virtue of its heavy gas test medium. This is followed by some remarks on the role played by scale models in the design and development of rotorcraft vehicles and review of the basis scaling relationships important for designing and building dynamics aeroelastic models of rotorcrat vehicles for testing in the TDT. Chronological accounts of helicopter and tiltrotor research conducted in the TDT are then described in separate sections. The discussions include a description of the various models employed, the specific objectives of the tests, and illustrative results.

[1]  Carlos E. S. Cesnik,et al.  Modeling, design, and testing of the NASA/Army/MIT active twist rotor prototype blade , 1999 .

[2]  W. R. Mantay,et al.  Correlation of full-scale helicopter rotor performance in air with model-scale Freon data , 1976 .

[3]  W Nixon Mark,et al.  A Variable Diameter Short Haul Civil Tiltrotor , 1999 .

[4]  G. Bingham The Aerodynamic Influences of Rotor Blade Airfoils, Twist, Taper, and Solidity on Hover and Forward Flight Performance , 1981 .

[5]  George W. Brooks The Application Of Models To Helicopter Vibration And Flutter Research , 1953 .

[6]  A. Z. Lemnios,et al.  Full Scale Wind Tunnel Tests Of A Controllable Twist Rotor , 1976 .

[7]  John Schillings,et al.  Validation of Rotor Vibratory Airloads and Application to Helicopter Response , 1990 .

[8]  Thomas F. Brooks,et al.  Rotor blade-vortex interaction noise reduction and vibration using higher harmonic control , 1990 .

[9]  C. D. Lee,et al.  Investigation of the effect of hub support parameters on two-bladed rotor oscillatory loads , 1974 .

[10]  Matthew L. Wilbur,et al.  Performance Data from a Wind-Tunnel Test of Two Main-rotor Blade Designs for a Utility-Class Helicopter , 1990 .

[11]  T. Ben Settle,et al.  Evolution and Test History of the V-22 0.2-Scale Aeroelastic Model , 1992 .

[12]  W. H. Weller,et al.  Load and stability measurements on a soft-inplane rotor system incorporating elastomeric lead-lag dampers , 1977 .

[13]  W. H. Reed,et al.  Aeroelasticity matters - Some reflections on two decades of testing in the NASA Langley Transonic Dynamics Tunnel , 1981 .

[14]  D Singleton Jeffrey,et al.  Performance and Vibratory Loads Data From a Wind-Tunnel Test of a Model Helicopter Main-Rotor Blade With a Paddle-Type Tip , 1997 .

[15]  W. R. Splettstoesser,et al.  Rotor blade-vortex interaction impulsive noise source identification and correlation with rotor wake predictions , 1987 .

[16]  Jay C. Hardin,et al.  Concepts for reduction of blade/vortex interaction noise , 1987 .

[17]  Paul H. Mirick,et al.  Vibratory Loads Data from a Wind-Tunnel Test of Structurally Tailored Model Helicopter Rotors , 1991 .

[18]  Robert V. Doggett,et al.  Aircraft aeroelasticity and structural dynamics research at the NASA Langley Research Center: Some illustrative results , 1988 .

[19]  William H. Weller,et al.  Wind-Tunnel Tests of Wide-Chord Teetering Rotors With and Without Outboard Flapping Hinges , 1977 .

[20]  John Vorwald,et al.  Dynamics Workshop On Rotor Vibratory Loads Prediction , 1998 .

[21]  W. H. Reed Review of propeller-rotor whirl flutter , 1967 .

[22]  Samuel R. Bland,et al.  An Analytical Treatment of Aircraft Propeller Precession Instability , 1961 .

[23]  Edmond F. Kiely,et al.  Development of Dynamic Model Rotor Blades for High Speed Helicopter Research , 1964 .

[24]  Troy M. Gaffey,et al.  The Effect of Positive Pitch-flap Coupling (Negative δ 3 ) on Rotor Blade Motion Stability and Flapping , 1969 .

[25]  A. Z. Lemnios,et al.  An Analytical Evaluation of the Controllable Twist Rotor Performance and Dynamic Behavior , 1972 .

[26]  W. R. Mantay,et al.  Parametric tip effects for conformable rotor applications , 1983 .

[27]  F. K. Straub,et al.  Application of higher harmonic blade feathering on the OH-6A helicopter for vibration reduction , 1986 .

[28]  Mark W. Nixon,et al.  Parametric Studies for Tiltrotor Aeroelastic Stability in Highspeed Flight , 1993 .

[29]  W. R. Mantay,et al.  Aeromechanical stability of a hingeless rotor in hover and forward flight: Analysis and wind tunnel tests , 1983 .

[30]  A. A. Regier The use of scaled dynamic models in several aerospace vehicle studies. , 1963 .

[31]  David L Kidd,et al.  Wind-Tunnel Investigation of a Quarter-Scale Two-Bladed High-Performance Rotor in a Freon Atmosphere , 1971 .

[32]  R. H. Blackwell,et al.  The Aeroelastically Conformable Rotor Concept , 1978 .

[33]  H. Langhaar Dimensional analysis and theory of models , 1951 .

[34]  Wilkie W. Keats,et al.  Aeroelastic Analysis of the NASA/ARMY/MIT Active Twist Rotor , 1999 .

[35]  R. H. Ricketts,et al.  Experimental aeroelasticity - History, status and future in brief , 1990 .

[36]  W. Johnson,et al.  CAMRAD - A COMPREHENSIVE ANALYTICAL MODEL OF ROTORCRAFT AERODYNAMICS AND DYNAMICS , 1994 .

[37]  Stanley R. Cole,et al.  Heavy Gas Conversion of the NASA Langley Transonic Dynamics Tunnel , 1998 .

[38]  R. G. Kvaternik,et al.  An experimental and analytical investigation of proprotor whirl flutter , 1977 .

[39]  Wayne Johnson,et al.  A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics. Part 1. Analysis Development , 1980 .

[40]  Raymond G. Kvaternik,et al.  A historical overview of tiltrotor aeroelastic research at Langley Research Center , 1992 .

[41]  Iii Boyd Perry,et al.  Activities in Aeroelasticity at NASA Langley Research Center , 1997, 4th International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise: Volume III.

[42]  S. R. Bland,et al.  Experimental and analytical investigation of propeller whirl flutter of a power plant on a flexible wing , 1964 .

[43]  Wayne R. Mantay,et al.  Aeroelastic Considerations for Torsionally Soft Rotors , 1986 .

[44]  R. White Developments in UK rotor blade technology , 1983 .

[45]  Wayne R. Mantay,et al.  Wind-tunnel investigation of the effects of blade tip geometry on the interaction of torsional loads and performance for an articulated helicopter rotor , 1981 .

[46]  John E Yeates INVESTIGATION OF ELASTIC COUPLING PHENOMENA OF HIGH SPEED RIGID ROTOR SYSTEMS , 1964 .

[47]  C. E. Hammond,et al.  Wind Tunnel Results Showing Rotor Vibratory Loads Reduction Using Higher Harmonic Blade Pitch , 1980 .

[48]  Richard P White,et al.  Wind-Tunnel Evaluation of an Aeroelastically Conformable Rotor. , 1982 .

[49]  Robert A. Ormiston,et al.  Comparison of Several Methods for Predicting Loads on a Hypothetical Helicopter Rotor , 1974 .

[50]  Robert M. Bennett,et al.  Wind-tunnel Measurement of Propeller Whirl-flutter Speeds and Static-stability Derivatives and Comparison with Theory , 1963 .

[51]  R. H. Blackwell,et al.  Wind Tunnel Evaluation of Aeroelastically Conformable Rotors , 1981 .

[52]  Matthew L. Wilbur Experimental investigation of helicopter vibration reduction using rotor blade aeroelastic tailoring , 1991 .

[53]  Juang Jer-Nan,et al.  Deadbeat Predictive Controllers , 1997 .

[54]  E. R. Wood,et al.  Practical design considerations for a flightworthy higher harmonic control system. [for flight testing on OH-6A helicopter] , 1980 .

[55]  Raymond G. Kvaternik,et al.  A Review of Some Tilt-Rotor Aeroelastic Research at NASA-Langley , 1976 .

[56]  W. H. Weller Experimental investigation of effects of blade tip geometry on loads and performance for an articulated rotor system , 1979 .

[57]  Wayne Johnson,et al.  A comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 2: User's manual , 1980 .

[58]  Wilkie W. Keats,et al.  Aeroelastic Analysis of Helicopter Rotor Blades Incorporating Anisotropic Piezoelectric Twist Actuation , 1996 .

[59]  J. Juang,et al.  Predictive feedback and feedforward control for systems with unknown disturbances , 1999 .

[60]  R. V. Doggett,et al.  Application of interactive computer graphics in wind-tunnel dynamic model testing , 1975 .

[61]  J. F. Ward A summary of hingeless-rotor structural loads and dynamics research. , 1966 .

[62]  W Nixon Mark,et al.  Tiltrotor Vibration Reduction Through Higher Harmonic Control , 1997 .

[63]  Paolo Mantegazza,et al.  Multi-Body Analysis of a Tiltrotor Configuration , 1998 .

[64]  P. W. Hanson An assessment of the future roles of the National Transonic Facility and the Langley Transonic Dynamics Tunnel in aeroelastic and unsteady aerodynamic testing , 1980 .

[65]  Matthew L. Wilbur,et al.  Wind-tunnel evaluation of an advanced main-rotor blade design for a utility-class helicopter , 1987 .

[66]  Heli Div.,et al.  Rotor Design Using Smart Materials to Actively Twist Blades , 1996 .

[67]  W Nixon Mark,et al.  Aeroelastic Response and Stability of Tiltrotors with Elastically-Coupled Composite Rotor Blades , 1993 .

[68]  C. E. Hammond,et al.  A Unified Approach to the Optimal Design of Adaptive and Gain Scheduled Controllers to Achieve Minimum Helicopter Rotor Vibration , 1981 .

[69]  W. Keats Wilkie,et al.  Recent rotorcraft aeroelastic testing in the Langley Transonic Dynamics Tunnel , 1993 .

[70]  Jr William T. Yeager,et al.  Important Scaling Parameters for Testing Model-Scale Helicopter Rotors , 1998 .

[71]  R. H. Blackwell,et al.  Blade Design for Reduced Helicopter Vibration , 1983 .

[72]  F. T. Abbott,et al.  On the use of freon-12 for increasing Reynolds number in wind-tunnel testing of three dimensional aircraft models at subcritical and supercritical Mach numbers , 1971 .

[73]  R. G. Kvaternik,et al.  Studies in tilt rotor VTOL aircraft aeroelasticity, volume 2. Ph.D. Thesis - Case Western Reserve Univ. , 1973 .

[74]  Nesbitt W. Hagood,et al.  Preliminary Mach-scale hover testing of an integral twist-actuated rotor blade , 1998, Smart Structures.

[75]  Minh Q. Phan,et al.  Predictive feedback controllers for stabilization of linear multivariable systems , 1996 .

[76]  David J. Piatak,et al.  Aeroelastic Tailoring for Stability Augmentation and Performance Enhancements of Tiltrotor Aircraft , 1999 .

[77]  W. R. Mantay,et al.  A review of research in rotor loads , 1988 .

[78]  Stanley R. Cole,et al.  Past, Present, and Future Capabilities of the Transonic Dynamics Tunnel from an Aeroelasticity Perspective , 2000 .

[79]  Paolo Mantegazza,et al.  Multi-Body Analysis of an Active Control for a Tiltrotor , 1999 .

[80]  Mark W. Nixon,et al.  Design, Analysis, and Test of a Composite Tailored Tiltrotor Wing , 1997 .

[81]  Marc Sheffler,et al.  Correlation of Test and Analysis for the 1/5-Scale V-22 Aeroelastic Model , 1987 .

[82]  Popelka David,et al.  Results of an Aeroelastic Tailoring Study for a Composite Tiltrotor Wing , 1995 .

[83]  Hughes Helicopters,et al.  On Developing and Flight Testing a Higher Harmonic Control System , 1983 .

[84]  A. G. Rainey Aeroelastic considerations for transports of the future - Subsonic, supersonic, and hypersonic. , 1968 .

[85]  Jing G Yen,et al.  A Study of Folding Proprotor VTOL Aircraft Dynamics. Volume 1. Analytical Methods , 1971 .

[86]  Wayne R. Mantay,et al.  An experimental investigation of the aeromechanical stability of a hingeless rotor in hover and forward flight , 1987 .

[87]  G. Bingham,et al.  Two-dimensional aerodynamic characteristics of several rotorcraft airfoils at Mach numbers from 0.35 to 0.90 , 1977 .

[88]  Paolo Mantegazza,et al.  Multi-Body Analysis of the 1/5 Scale Wind Tunnel Model of the V-22 Tiltrotor , 1999 .