Direct method of extracting broadband complex refractive index from spectrophotometric measurements: an application to polydimethylsiloxane for passive radiative cooling

Abstract. We describe an algorithm to extract the complex refractive index of a material from broadband reflectance and transmittance measurements taken by spectrophotometers. The algorithm combines Kramers–Kronig analysis with an inversion of Fresnel’s equations to provide a direct method of solving for the refractive index which is accurate, even for weakly absorbing materials, and easily applicable to radiative heat transfer calculations. The algorithm is validated by extracting the complex refractive index of polydimethylsiloxane between 0.25  μm and 100  μm and comparing against existing literature. We also discuss the importance of broadband optical properties to passive radiative cooling and details of the uncertainty analysis of the algorithm.

[1]  D. A. Kleinman,et al.  Infrared Lattice Bands of Quartz , 1961 .

[2]  R. Azzam Explicit determination of the complex refractive index of an absorbing medium from reflectance measurements at and near normal incidence , 1982 .

[3]  M. Gottlieb Optical Properties of Lithium Fluoride in the Infrared , 1960 .

[4]  G. Levêque Reflectivity extrapolations in Kramers-Kronig analysis , 1977 .

[5]  R. Miller,et al.  A general procedure for evaluating optical constants from functions of reflectance at two angles of incidence , 1974 .

[6]  Marc Abou Anoma,et al.  Passive radiative cooling below ambient air temperature under direct sunlight , 2014, Nature.

[7]  T. S. Robinson Optical Constants by Reflection , 1952 .

[8]  F. Schneider,et al.  Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS , 2009 .

[9]  William Ralph Hunter,et al.  Errors in using the Reflectance vs Angle of Incidence Method for Measuring Optical Constants , 1965 .

[10]  A. Srinivasan,et al.  Potential for Passive Radiative Cooling by PDMS Selective Emitters , 2017 .

[11]  K. F. Palmer,et al.  Multiply subtractive kramers-kronig analysis of optical data. , 1998, Applied optics.

[12]  남동석,et al.  III , 1751, Olav Audunssøn.

[13]  Andreas Neyer,et al.  Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials , 2010 .

[14]  Zongfu Yu,et al.  A polydimethylsiloxane-coated metal structure for all-day radiative cooling , 2019, Nature Sustainability.

[15]  A. Srinivasan,et al.  Infrared dielectric function of polydimethylsiloxane and selective emission behavior , 2016 .

[16]  D. Roessler,et al.  Kramers-Kronig analysis of reflection data , 1965 .

[17]  R. Miller,et al.  A new computational method of obtaining optical constants from reflectance ratio measurements , 1972 .

[18]  H. Verleur,et al.  Determination of Optical Constants from Reflectance or Transmittance Measurements on Bulk Crystals or Thin Films , 1968 .

[19]  Leonard M. Hanssen,et al.  Infrared diffuse reflectance instrumentation and standards at NIST , 1999 .

[20]  D. Roessler Kramers - Kronig analysis of non-normal incidence reflection , 1965 .

[21]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[22]  A. Hjortsberg,et al.  Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films , 1981 .

[23]  Xinjun Wan,et al.  Colour compound lenses for a portable fluorescence microscope , 2019, Light: Science & Applications.

[24]  M. Sharnoff Validity Conditions for the Kramers-Kronig Relations , 1964 .

[25]  Steven J. Byrnes,et al.  Multilayer optical calculations , 2016, 1603.02720.

[26]  H. Ishida,et al.  Optical theory applied to infrared spectroscopy , 1994 .

[27]  Jingjing Guo,et al.  Highly flexible and stretchable optical strain sensing for human motion detection , 2017 .

[28]  Günter Gauglitz,et al.  In-situ characterization of thin polymer films for applications in chemical sensing of volatile organic compounds by spectroscopic ellipsometry , 1997 .

[29]  Braden Czapla,et al.  Direct method of extracting complex refractive index from routine Fourier transform infrared reflectance/transmittance measurements , 2020, Optical Engineering + Applications.

[30]  E. Nichelatti Complex refractive index of a slab from reflectance and transmittance: analytical solution , 2002 .

[31]  D. Roessler Kramers - Kronig analysis of reflectance data: III. Approximations, with reference to sodium iodide , 1966 .

[32]  A. Cardenas-Valencia,et al.  Spectrometric Determination of the Refractive Index of Optical Wave Guiding Materials Used in Lab-on-a-Chip Applications , 2006, Applied spectroscopy.

[33]  J. Baumberg,et al.  Stretch-tuneable dielectric mirrors and optical microcavities. , 2010, Optics express.

[34]  R. Henderson,et al.  Broadband Terahertz Refraction Index Dispersion and Loss of Polymeric Dielectric Substrate and Packaging Materials , 2017 .

[35]  G. Andermann,et al.  Kramers-Kronig Dispersion Analysis of Infrared Reflectance Bands , 1965 .

[36]  K. Peiponen,et al.  Maximum entropy model in reflection spectra analysis , 1992 .

[37]  Leonard M. Hanssen,et al.  Integrating Spheres for Mid‐ and Near‐Infrared Reflection Spectroscopy , 2006 .

[38]  M. Querry,et al.  Optical constants of minerals and other materials from the millimeter to the ultraviolet , 1987 .

[39]  M. Querry,et al.  Direct Solution of the Generalized Fresnel Reflectance Equations , 1969 .

[40]  L. Hanssen,et al.  Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples. , 2001, Applied optics.

[41]  R. Kronig On the Theory of Dispersion of X-Rays , 1926 .

[42]  Guocheng Shao,et al.  new fabrication method for all-PDMS waveguides , 2013 .

[43]  D. G. Thomas,et al.  Exciton Spectrum of Cadmium Sulfide , 1959 .

[44]  Shanhui Fan,et al.  Daytime radiative cooling using near-black infrared emitters , 2017 .

[45]  G. Gallot,et al.  Density of states and vibrational modes of PDMS studied by terahertz time-domain spectroscopy , 2010 .

[46]  Junming Zhao,et al.  Complex refractive indices measurements of polymers in infrared bands , 2020 .

[47]  J. Bechhoefer Kramers–Kronig, Bode, and the meaning of zero , 2011, 1107.0071.

[48]  P. Grosse,et al.  Analysis of reflectance data using the Kramers-Kronig Relations , 1991 .

[49]  A.B.Kuzmenko Kramers-Kronig constrained variational analysis of optical spectra , 2005 .

[50]  Stephanus Büttgenbach,et al.  Monolithic PDMS passband filters for fluorescence detection. , 2010, Lab on a chip.

[51]  D. Kolb Determination of the Optical Constants of Solids by Reflectance-Ratio Measurements at Non-Normal Incidence , 1972 .

[52]  Daniel Kacik,et al.  Measurement of PDMS refractive index by low-coherence interferometry , 2014, 2014 ELEKTRO.

[53]  Leonard M. Hanssen,et al.  Specular baffle for improved infrared integrating sphere performance , 2003, SPIE Optics + Photonics.

[54]  Kiyoshi Yamamoto,et al.  Complex Refractive Index Determination of Bulk Materials from Infrared Reflection Spectra , 1995 .

[55]  L. Hanssen,et al.  Infrared Optical Properties of Materials , 2015 .

[56]  Tri Giang Phan,et al.  Fabricating low cost and high performance elastomer lenses using hanging droplets. , 2014, Biomedical optics express.

[57]  K. Peiponen,et al.  Generalized Kramers–Kronig relations in nonlinear optical- and THz-spectroscopy , 2009 .

[58]  J. M. Zhao,et al.  Complex refractive indices measurements of polymers in visible and near-infrared bands. , 2020, Applied optics.

[59]  Franz C. Jahoda,et al.  Fundamental Absorption of Barium Oxide from Its Reflectivity Spectrum , 1957 .