Constrained nonlinear MPC using hammerstein and wiener models: PLS framework

Methods of implementing an input-constrained, nonlinear, model-predictive controller in latent spaces using partial-least-squares (PLS)-based Hammerstein and Wiener models are discussed. For multiple-input, multiple-output (MIMO) systems, the PLS flamework presents a viable alternative for identification and controller synthesis using Hammerstein and Wiener structures. The constraint mappings, which have to be taken into account during controller design in the PLS flamework, are highlighted. PLS-based Wiener models are well suited for constrained control of nonlinear systems. The use of PLS-based Hammerstein models for control involves solution of a nonlinear program as a result of the constraint mapping. The proposed approach is demonstrated on a simulated pH-level control of an acid base neutralization process.

[1]  G. Gattu,et al.  Nonlinear Quadratic Dynamic Matrix Control with State Estimation , 1992 .

[2]  Sachin C. Patwardhan,et al.  Nonlinear model predictive control using second-order model approximation , 1993 .

[3]  Yaman Arkun,et al.  Control of nonlinear systems using polynomial ARMA models , 1993 .

[4]  Ronald K. Pearson,et al.  Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models , 1996, Autom..

[5]  Zhu Xue-feng,et al.  Nonlinear Predictive Control Based on Hammerstein Models , 1994 .

[6]  Sirish L. Shah,et al.  Identification of Hammerstein models using multivariate statistical tools , 1995 .

[7]  William R. Cluett,et al.  Nonlinear model-based predictive control of control nonaffine systems , 1997, Autom..

[8]  W. Harmon Ray,et al.  Chemometric methods for process monitoring and high‐performance controller design , 1992 .

[9]  N. L. Ricker The use of biased least-squares estimators for parameters in discrete-time pulse-response models , 1988 .

[10]  N. V. Bhat,et al.  Use of neural nets for dynamic modeling and control of chemical process systems , 1990 .

[11]  W. Harmon Ray,et al.  Dynamic PLS modelling for process control , 1993 .

[12]  W. C. Li,et al.  Newton-type control strategies for constrained nonlinear processes , 1989 .

[13]  Lorenz T. Biegler,et al.  Process control strategies for constrained nonlinear systems , 1988 .

[14]  Sirish L. Shah,et al.  Modeling and control of multivariable processes: Dynamic PLS approach , 1997 .

[15]  David D. Brengel,et al.  Multistep nonlinear predictive controller , 1989 .

[16]  Ronald K. Pearson,et al.  Nonlinear model-based control using second-order Volterra models , 1995, Autom..

[17]  M. Verhaegen,et al.  Identifying MIMO Hammerstein systems in the context of subspace model identification methods , 1996 .

[18]  A. A. Patwardhan,et al.  NONLINEAR MODEL PREDICTIVE CONTROL , 1990 .

[19]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[20]  Stanley H. Johnson,et al.  Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .