Synchronization of variable-order fractional financial system via active control method

In this paper, we study the chaotic dynamics of a Variable-Order Fractional Financial System (VOFFS). The Variable-Order Fractional Derivative (VOFD) is defined in Caputo type. A necessary condition for occurrence of chaos in VOFFS is obtained. Numerical experiments on the dynamics of the VOFFS with various conditions are given. Based on them, it is shown that the VOFFS has complex dynamical behavior, and the occurrence of chaos depends on the choice of order function. Furthermore, the chaos synchronization of the VOFFS is studied via active control method. Numerical simulations demonstrate that the active control method is effective and simple for synchronizing the VOFFSs with commensurate or incommensurate order functions.

[1]  N. Laskin Fractional market dynamics , 2000 .

[2]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[3]  B. M. Fulk MATH , 1992 .

[4]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[5]  D. Hutchinson Self-Consistent Effects of Continuous Wave Output Coupling of Atoms from a Bose-Einstein Condensate , 1998, cond-mat/9811129.

[6]  K. Mirabbaszadeh,et al.  Molecular dynamics simulation of mechanical properties of Ni–Al nanowires , 2010 .

[7]  Choon Ki Ahn,et al.  Output feedback ℋ∞ synchronization for delayed chaotic neural networks , 2009 .

[8]  J.-K. Lee,et al.  Chaos synchronization and parameter identification for gyroscope system , 2005, Appl. Math. Comput..

[9]  Stefan Samko,et al.  Fractional integration and differentiation of variable order , 1995 .

[10]  Markus Kästner,et al.  A nonlinear fractional viscoelastic material model for polymers , 2011 .

[11]  Andrew G. Glen,et al.  APPL , 2001 .

[12]  M. Matinfar,et al.  GMRES implementations and residual smoothing techniques for solving ill-posed linear systems , 2012, Comput. Math. Appl..

[13]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[14]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[15]  Mohammad Pourmahmood Aghababa Comments on “Fuzzy fractional order sliding mode controller for nonlinear systems” [Commun Nonlinear Sci Numer Simulat 15 (2010) 963–978] , 2012 .

[16]  Iu.P. Gupalo,et al.  Continuous-flow system with fractional order chemical reaction in the presence of axial dispersion☆ , 1981 .

[17]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[18]  Boyan Brodaric,et al.  The design of GSC FieldLog: ontology-based software for computer aided geological field mapping , 2004, Comput. Geosci..

[19]  M. Piva,et al.  Experiments on vortex funnel formation during drainage , 2003 .

[20]  Ivo Petras,et al.  Fractional-Order Nonlinear Systems , 2011 .

[21]  Leon O. Chua,et al.  Experimental Demonstration of Secure Communications via Chaotic Synchronization , 1992, Chua's Circuit.

[22]  A. Pires,et al.  Quantum phase transition in the two-dimensional XY model with single-ion anisotropy , 2009 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Carlos F.M. Coimbra,et al.  Mechanics with variable‐order differential operators , 2003 .

[25]  I. Podlubny Fractional differential equations , 1998 .

[26]  Rudolf Hilfer,et al.  On fractional diffusion and continuous time random walks , 2003 .

[27]  Choon Ki Ahn,et al.  Takagi-Sugeno fuzzy receding horizon H∞ chaotic synchronization and its application to the Lorenz system , 2013 .

[28]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[29]  Suwat Kuntanapreeda,et al.  Robust synchronization of fractional-order unified chaotic systems via linear control , 2012, Comput. Math. Appl..

[30]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[31]  Richard L. Magin,et al.  Fractional calculus models of complex dynamics in biological tissues , 2010, Comput. Math. Appl..

[32]  Hermann Haken,et al.  Synchronization and pattern recognition in a pulse-coupled neural net , 2005 .