Analysis and optimization of dry sliding wear characteristics of zirconia reinforced alumina composites formed by conventional sintering using response surface method

[1]  T. Ramesh,et al.  Shrinkage characteristics studies on conventional sintered zirconia toughened alumina using computed tomography imaging technique , 2016 .

[2]  T. Ramesh,et al.  Optimization to develop multiple response hardness and compressive strength of zirconia reinforced alumina by using RSM and GRA , 2015 .

[3]  M. Gee,et al.  Wear modes in slurry jet erosion of tungsten carbide hardmetals: Their relationship with microstructure and mechanical properties , 2015 .

[4]  V. Senthilkumar,et al.  Synthesis of electric discharge alloyed nickel–tungsten coating on tool steel and its tribological studies , 2014 .

[5]  S. Baskaran,et al.  Investigations on dry sliding wear behavior of in situ casted AA7075–TiC metal matrix composites by using Taguchi technique , 2014 .

[6]  T. Ramesh,et al.  Optimization of Process Parameters of Zirconia Reinforced Alumina by Powder Forming Process Using Response Surface Method , 2014 .

[7]  Biswanath Doloi,et al.  Predictive modeling of surface roughness in high speed machining of AISI 4340 steel using yttria stabilized zirconia toughened alumina turning insert , 2013 .

[8]  W. M. Rainforth,et al.  The effect of lubrication on the friction and wear of Biolox®delta. , 2012, Acta biomaterialia.

[9]  J. Echeberria,et al.  Hot isostatic pressing (HIP) of α-Al2O3 submicron ceramics pressureless sintered at different temperatures: Improvement in mechanical properties for use in total hip arthroplasty (THA) , 2009 .

[10]  K. Biswas,et al.  Dry sliding wear of zirconia-toughened alumina with different metal oxide additives , 2009 .

[11]  R. Tomasi,et al.  Correlation between microstructure and mechanical properties of Al2O3/ZrO2 nanocomposites , 2009 .

[12]  K. Y. Sastry,et al.  Synthesis and mechanical and tribological characterization of alumina–yttria stabilized zirconia (YSZ) nanocomposites with YSZ synthesized by means of an aqueous solution–gel method or a hydrothermal route , 2008 .

[13]  S. K. Pratihar,et al.  Powder processing and densification behaviour of alumina-high zirconia nanocomposites using chloride precursors , 2007 .

[14]  A. V. Riessen,et al.  Wear of zirconia-dispersed alumina at ambient temperature, 140 °C and 250 °C , 2006 .

[15]  J. Llorca,et al.  Percolative mechanism of sliding wear in alumina/zirconia composites , 2006 .

[16]  D. Schipper,et al.  Environmental effects on friction and wear of dry sliding zirconia and alumina ceramics doped with copper oxide , 2005 .

[17]  Stephen M. Hsu,et al.  Wear prediction of ceramics , 2004 .

[18]  H. Verweij,et al.  tribological properties of nanoscale alumina-zirconia composites , 1999 .

[19]  J. Hawk,et al.  Role of zirconia toughening in the abrasive wear of intermetallic and ceramic composites , 1997 .

[20]  B. Bai,et al.  Effect of interface layers formed during dry sliding of zirconia toughened alumina (ZTA) and monolithic alumina against steel , 1996 .

[21]  S. M. Hsu,et al.  Wear transitions in monolithic alumina and zirconia-alumina composites , 1995 .

[22]  Donald H. Buckley,et al.  Friction and wear of ceramics , 1984 .

[23]  N. C. Kothari The effect of particle size on sintering kinetics in alumina powder , 1965 .