Imaging Calcium in Neurons

Calcium ions generate versatile intracellular signals that control key functions in all types of neurons. Imaging calcium in neurons is particularly important because calcium signals exert their highly specific functions in well-defined cellular subcompartments. In this Primer, we briefly review the general mechanisms of neuronal calcium signaling. We then introduce the calcium imaging devices, including confocal and two-photon microscopy as well as miniaturized devices that are used in freely moving animals. We provide an overview of the classical chemical fluorescent calcium indicators and of the protein-based genetically encoded calcium indicators. Using application examples, we introduce new developments in the field, such as calcium imaging in awake, behaving animals and the use of calcium imaging for mapping single spine sensory inputs in cortical neurons in vivo. We conclude by providing an outlook on the prospects of calcium imaging for the analysis of neuronal signaling and plasticity in various animal models.

[1]  Matt Wachowiak,et al.  Distributed and concentration-invariant spatial representations of odorants by receptor neuron input to the turtle olfactory bulb. , 2002, Journal of neurophysiology.

[2]  David W. Tank,et al.  Dendritic calcium dynamics , 1994, Current Opinion in Neurobiology.

[3]  E. B. Ridgway,et al.  Simultaneous Recording of Membrane Potential, Calcium Transient and Tension in Single Muscle Fibres , 1968, Nature.

[4]  Karel Svoboda,et al.  Activity-Dependent Plasticity of the NMDA-Receptor Fractional Ca2+ Current , 2007, Neuron.

[5]  K. Baimbridge,et al.  Calcium-binding proteins in the nervous system , 1992, Trends in Neurosciences.

[6]  Y. Yoshihara,et al.  Odorant Receptor Map in the Mouse Olfactory Bulb: In Vivo Sensitivity and Specificity of Receptor-Defined Glomeruli , 2006, Neuron.

[7]  Takeharu Nagai,et al.  Quantitative Comparison of Genetically Encoded Ca2+ Indicators in Cortical Pyramidal Cells and Cerebellar Purkinje Cells , 2011, Front. Cell. Neurosci..

[8]  David S. Greenberg,et al.  Imaging input and output of neocortical networks in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  David W. Tank,et al.  The maintenance of LTP at hippocampal mossy fiber synapses is independent of sustained presynaptic calcium , 1991, Neuron.

[10]  Takeharu Nagai,et al.  Functional Fluorescent Ca2+ Indicator Proteins in Transgenic Mice under TET Control , 2004, PLoS biology.

[11]  X. Breakefield,et al.  Viral vectors for gene delivery to the nervous system , 2003, Nature Reviews Neuroscience.

[12]  Edward M. Callaway,et al.  Short Promoters in Viral Vectors Drive Selective Expression in Mammalian Inhibitory Neurons, but do not Restrict Activity to Specific Inhibitory Cell-Types , 2009, Frontiers in neural circuits.

[13]  Shigeo Watanabe,et al.  Synaptically Activated Ca2+ Waves in Layer 2/3 and Layer 5 Rat Neocortical Pyramidal Neurons , 2003, The Journal of physiology.

[14]  Norio Matsuki,et al.  Fast and accurate detection of action potentials from somatic calcium fluctuations. , 2008, Journal of neurophysiology.

[15]  O. Albert,et al.  Adaptive correction of depth‐induced aberrations in multiphoton scanning microscopy using a deformable mirror , 2002, Journal of microscopy.

[16]  T. Kaneko,et al.  Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67‐GFP knock‐in mouse , 2003, The Journal of comparative neurology.

[17]  Spencer L Shorte,et al.  Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters , 2005, The European journal of neuroscience.

[18]  J. Lichtman,et al.  Optical sectioning microscopy , 2005, Nature Methods.

[19]  G. Baker,et al.  Effects of temperature on calcium-sensitive fluorescent probes. , 2000, Biophysical journal.

[20]  D. Tank,et al.  Functional Clustering of Neurons in Motor Cortex Determined by Cellular Resolution Imaging in Awake Behaving Mice , 2009, The Journal of Neuroscience.

[21]  M. Deschenes,et al.  A microprobe for parallel optical and electrical recordings from single neurons in vivo , 2011, Nature Methods.

[22]  W. Denk,et al.  Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. , 2003, Optics letters.

[23]  Tullio Pozzan,et al.  Microdomains of intracellular Ca2+: molecular determinants and functional consequences. , 2006, Physiological reviews.

[24]  D. Coulter,et al.  In vitro functional imaging in brain slices using fast voltage-sensitive dye imaging combined with whole-cell patch recording , 2008, Nature Protocols.

[25]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[26]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[27]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[28]  Takeshi Sakaba,et al.  Multiple Roles of Calcium Ions in the Regulation of Neurotransmitter Release , 2008, Neuron.

[29]  M. Ohkura,et al.  Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+ indicator protein , 2005, The European journal of neuroscience.

[30]  N. Spitzer,et al.  Activity-Dependent Expression of Lmx1b Regulates Specification of Serotonergic Neurons Modulating Swimming Behavior , 2010, Neuron.

[31]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[32]  A. Wong,et al.  Two-Photon Calcium Imaging Reveals an Odor-Evoked Map of Activity in the Fly Brain , 2003, Cell.

[33]  K. Svoboda,et al.  Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience , 2006, Neuron.

[34]  Brendon O. Watson,et al.  Spike inference from calcium imaging using sequential Monte Carlo methods. , 2009, Biophysical journal.

[35]  M H Ellisman,et al.  Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. , 1999, Biophysical journal.

[36]  K. Zipser,et al.  Role of residual calcium in synaptic depression and posttetanic potentiation: Fast and slow calcium signaling in nerve terminals , 1991, Neuron.

[37]  O. Garaschuk,et al.  Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo , 2006, Nature Protocols.

[38]  David S. Greenberg,et al.  Spatial Organization of Neuronal Population Responses in Layer 2/3 of Rat Barrel Cortex , 2007, The Journal of Neuroscience.

[39]  H. Cline,et al.  Convergence of multisensory inputs in Xenopus tadpole tectum , 2009, Developmental neurobiology.

[40]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[41]  T. Jovin,et al.  FRET imaging , 2003, Nature Biotechnology.

[42]  Beat Schwaller,et al.  Cytosolic Ca2+ buffers. , 2010, Cold Spring Harbor perspectives in biology.

[43]  R S Zucker,et al.  Calcium in motor nerve terminals associated with posttetanic potentiation , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  A. Konnerth,et al.  Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[45]  D. Clapham,et al.  An introduction to TRP channels. , 2006, Annual review of physiology.

[46]  Robert S. Coffin,et al.  Multiple Immediate-Early Gene-Deficient Herpes Simplex Virus Vectors Allowing Efficient Gene Delivery to Neurons in Culture and Widespread Gene Delivery to the Central Nervous System In Vivo , 2001, Journal of Virology.

[47]  K. Ressler,et al.  Identification of cell-type-specific promoters within the brain using lentiviral vectors , 2007, Gene Therapy.

[48]  T. Hirano,et al.  Shining the light: the mechanism of the bioluminescence reaction of calcium-binding photoproteins. , 1996, Chemistry & biology.

[49]  Winfried Denk,et al.  Targeted Whole-Cell Recordings in the Mammalian Brain In Vivo , 2003, Neuron.

[50]  B. Sakmann,et al.  Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression , 1994, Neuron.

[51]  Chitra Subramanian,et al.  Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues , 2007, Proceedings of the National Academy of Sciences.

[52]  R. Reid,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience Methods Article , 2022 .

[53]  Mark A Masino,et al.  Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. , 2003, Journal of neurophysiology.

[54]  Eric Betzig,et al.  Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues , 2010, Nature Methods.

[55]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[56]  A. Marty,et al.  Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients , 2000, Nature Neuroscience.

[57]  D. Tank,et al.  Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice , 2007, Neuron.

[58]  K. Deisseroth,et al.  Circuit-breakers: optical technologies for probing neural signals and systems , 2007, Nature Reviews Neuroscience.

[59]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[60]  Benjamin Mathieu,et al.  Optical monitoring of neuronal activity at high frame rate with a digital random-access multiphoton (RAMP) microscope , 2008, Journal of Neuroscience Methods.

[61]  A. Fine,et al.  Postsynaptic Calcium Transients Evoked by Activation of Individual Hippocampal Mossy Fiber Synapses , 2001, The Journal of Neuroscience.

[62]  D. Prince,et al.  Printed in Great Britain , 2005 .

[63]  Kunal K. Ghosh,et al.  Advances in light microscopy for neuroscience. , 2009, Annual review of neuroscience.

[64]  Damian J. Wallace,et al.  Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor , 2008, Nature Methods.

[65]  T. Tsumoto,et al.  GABAergic Neurons Are Less Selective to Stimulus Orientation than Excitatory Neurons in Layer II/III of Visual Cortex, as Revealed by In Vivo Functional Ca2+ Imaging in Transgenic Mice , 2007, The Journal of Neuroscience.

[66]  G. Buzsáki,et al.  Calcium Dynamics of Cortical Astrocytic Networks In Vivo , 2004, PLoS biology.

[67]  A Miyawaki,et al.  Dynamic and quantitative Ca2+ measurements using improved cameleons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Pavel Osten,et al.  Stereotaxic gene delivery in the rodent brain , 2007, Nature Protocols.

[69]  Anne E. West,et al.  Mechanisms of specificity in neuronal activity-regulated gene transcription , 2011, Progress in Neurobiology.

[70]  Jack Waters,et al.  Ca2+ imaging in the mammalian brain in vivo. , 2002, European journal of pharmacology.

[71]  Lin Tian,et al.  Functional imaging of hippocampal place cells at cellular resolution during virtual navigation , 2010, Nature Neuroscience.

[72]  J. Buchanan,et al.  The spatial distribution of calcium signals in squid presynaptic terminals. , 1993, The Journal of physiology.

[73]  A Grinvald,et al.  Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia using a 124-element photodiode array. , 1981, Journal of neurophysiology.

[74]  O. Garaschuk,et al.  Large-scale oscillatory calcium waves in the immature cortex , 2000, Nature Neuroscience.

[75]  E. Yaksi,et al.  Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging , 2006, Nature Methods.

[76]  M. Häusser,et al.  Targeted single-cell electroporation of mammalian neurons in vivo , 2009, Nature Protocols.

[77]  A. C. Greenwood,et al.  Reduced voltage-dependent Ca2+ signaling in CA1 neurons after brief ischemia in gerbils. , 1999, Journal of neurophysiology.

[78]  M. Spira,et al.  Real Time Imaging of Calcium-Induced Localized Proteolytic Activity after Axotomy and Its Relation to Growth Cone Formation , 1998, Neuron.

[79]  P. Fossier,et al.  Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Israel Nelken,et al.  Sound‐evoked network calcium transients in mouse auditory cortex in vivo , 2012, The Journal of physiology.

[81]  O. Shimomura Membrane permeability of coelenterazine analogues measured with fish eggs. , 1997, The Biochemical journal.

[82]  Spencer L. Smith,et al.  Parallel processing of visual space by neighboring neurons in mouse visual cortex , 2010, Nature Neuroscience.

[83]  Nathalie L Rochefort,et al.  Functional mapping of single spines in cortical neurons in vivo , 2011, Nature.

[84]  Norio Matsuki,et al.  Locally Synchronized Synaptic Inputs , 2012, Science.

[85]  Rodolfo Llinás,et al.  P-type calcium channels in the somata and dendrites of adult cerebellar purkinje cells , 1992, Neuron.

[86]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[87]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[88]  M. Berridge,et al.  Calcium: Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature Reviews Molecular Cell Biology.

[89]  M. Brini Calcium-sensitive photoproteins. , 2008, Methods.

[90]  Oliver Griesbeck,et al.  Improved calcium imaging in transgenic mice expressing a troponin C–based biosensor , 2007, Nature Methods.

[91]  A. Gelperin,et al.  Vital staining from dye-coated microprobes identifies new olfactory interneurons for optical and electrical recording , 1997, Journal of Neuroscience Methods.

[92]  W. Denk,et al.  Mechanisms of Calcium Influx into Hippocampal Spines: Heterogeneity among Spines, Coincidence Detection by NMDA Receptors, and Optical Quantal Analysis , 1999, The Journal of Neuroscience.

[93]  M. Berridge,et al.  The versatility and universality of calcium signalling , 2000, Nature Reviews Molecular Cell Biology.

[94]  Marc Freichel,et al.  TRPC3 Channels Are Required for Synaptic Transmission and Motor Coordination , 2008, Neuron.

[95]  K. Svoboda,et al.  Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window , 2009, Nature Protocols.

[96]  T. Holy,et al.  Fast Three-Dimensional Fluorescence Imaging of Activity in Neural Populations by Objective-Coupled Planar Illumination Microscopy , 2008, Neuron.

[97]  Jaime Grutzendler,et al.  Thinned-skull cranial window technique for long-term imaging of the cortex in live mice , 2010, Nature Protocols.

[98]  L. Looger,et al.  Genetically encoded neural activity indicators , 2012, Current Opinion in Neurobiology.

[99]  R Y Tsien,et al.  Calcium channels, stores, and oscillations. , 1990, Annual review of cell biology.

[100]  Jerome Mertz,et al.  Two-photon microscopy in brain tissue: parameters influencing the imaging depth , 2001, Journal of Neuroscience Methods.

[101]  F. Helmchen,et al.  Calcium indicator loading of neurons using single-cell electroporation , 2007, Pflügers Archiv - European Journal of Physiology.

[102]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Alison L. Barth,et al.  Pathway-Specific Trafficking of Native AMPARs by In Vivo Experience , 2006, Neuron.

[104]  Junichi Nakai,et al.  Characterization and Subcellular Targeting of GCaMP-Type Genetically-Encoded Calcium Indicators , 2008, PloS one.

[105]  A. Konnerth,et al.  Imaging in neuroscience : a laboratory manual , 2011 .

[106]  R. Tsien Fluorescent probes of cell signaling. , 1989, Annual review of neuroscience.

[107]  A Konnerth,et al.  Ryanodine receptor‐mediated intracellular calcium release in rat cerebellar Purkinje neurones. , 1995, The Journal of physiology.

[108]  F. Helmchen,et al.  Boosting of Action Potential Backpropagation by Neocortical Network Activity In Vivo , 2004, The Journal of Neuroscience.

[109]  Sebastian T. Bundschuh,et al.  Transformation of odor representations in target areas of the olfactory bulb , 2009, Nature Neuroscience.

[110]  R. Menzel,et al.  The glomerular code for odor representation is species specific in the honeybee Apis mellifera , 1999, Nature Neuroscience.

[111]  T. Takano,et al.  Astrocyte-mediated control of cerebral blood flow , 2006, Nature Neuroscience.

[112]  M. Larkum,et al.  Frontiers in Neural Circuits Neural Circuits Methods Article , 2022 .

[113]  W. N. Ross,et al.  Synaptic Activation and Membrane Potential Changes Modulate the Frequency of Spontaneous Elementary Ca2+ Release Events in the Dendrites of Pyramidal Neurons , 2009, The Journal of Neuroscience.

[114]  Dagmar Wirth,et al.  Road to precision: recombinase-based targeting technologies for genome engineering. , 2007, Current opinion in biotechnology.

[115]  B. Sakmann,et al.  In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain , 2002, Pflügers Archiv.

[116]  Karel Svoboda,et al.  NMDA Receptor Subunit-Dependent [Ca2+] Signaling in Individual Hippocampal Dendritic Spines , 2005, The Journal of Neuroscience.

[117]  M. Berridge Neuronal Calcium Signaling , 1998, Neuron.

[118]  Wei R. Chen,et al.  Differential Axonal Projection of Mitral and Tufted Cells in the Mouse Main Olfactory System , 2010, Front. Neural Circuits.

[119]  J. Freer,et al.  New Calcium Indicators and Buffers with High Selectivity against Magnesium and Protons : Design , Synthesis , and Properties of Prototype Structures ? , 2001 .

[120]  Masaharu Ogawa,et al.  Gene application with in utero electroporation in mouse embryonic brain , 2008, Development, growth & differentiation.

[121]  W. N. Ross,et al.  High time resolution fluorescence imaging with a CCD camera , 1991, Journal of Neuroscience Methods.

[122]  Rosa Cossart,et al.  A Parturition-Associated Nonsynaptic Coherent Activity Pattern in the Developing Hippocampus , 2007, Neuron.

[123]  M. Berridge Inositol trisphosphate and calcium signalling , 1993, Nature.

[124]  Tobias Bonhoeffer,et al.  Altered Visual Experience Induces Instructive Changes of Orientation Preference in Mouse Visual Cortex , 2011, The Journal of Neuroscience.

[125]  Matt Wachowiak,et al.  In Vivo Imaging of Neuronal Activity by Targeted Expression of a Genetically Encoded Probe in the Mouse , 2004, Neuron.

[126]  Kerry R. Delaney,et al.  Odour‐evoked [Ca2+] transients in mitral cell dendrites of frog olfactory glomeruli , 2001 .

[127]  S. Wang,et al.  In vivo calcium imaging of circuit activity in cerebellar cortex. , 2005, Journal of neurophysiology.

[128]  Alexander Borst,et al.  Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons , 2009, Nature Neuroscience.

[129]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[130]  R. Dobarzić,et al.  [Fluorescence microscopy]. , 1975, Plucne bolesti i tuberkuloza.

[131]  A. Miyawaki,et al.  Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[132]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[133]  P. Fan,et al.  Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. , 1996, Human gene therapy.

[134]  A. Konnerth,et al.  Fractional contribution of calcium to the cation current through glutamate receptor channels , 1993, Neuron.

[135]  Germán Sumbre,et al.  Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval , 2008, Nature.

[136]  P. Conn,et al.  Metabotropic glutamate receptors: physiology, pharmacology, and disease. , 2010, Annual review of pharmacology and toxicology.

[137]  A. Borst,et al.  A genetically encoded calcium indicator for chronic in vivo two-photon imaging , 2008, Nature Methods.

[138]  H. Steinbusch,et al.  In vivo electroporation of the central nervous system: A non-viral approach for targeted gene delivery , 2010, Progress in Neurobiology.

[139]  K. Svoboda,et al.  The Functional Microarchitecture of the Mouse Barrel Cortex , 2007, Neuroscience Research.

[140]  Pankaj Sah,et al.  Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala , 1998, Nature.

[141]  Bert Sakmann,et al.  Dendritic coding of multiple sensory inputs in single cortical neurons in vivo , 2011, Proceedings of the National Academy of Sciences.

[142]  Thomas K. Berger,et al.  Combined voltage and calcium epifluorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex. , 2007, Journal of neurophysiology.

[143]  W. Webb,et al.  Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[144]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[145]  Norio Matsuki,et al.  Nipkow confocal imaging from deep brain tissues. , 2011, Journal of integrative neuroscience.

[146]  B. Sabatini,et al.  Calcium Signaling in Dendrites and Spines: Practical and Functional Considerations , 2008, Neuron.

[147]  Karel Svoboda,et al.  Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice , 2010, Nature.

[148]  Fritjof Helmchen,et al.  Chronic imaging of cortical sensory map dynamics using a genetically encoded calcium indicator , 2012, The Journal of physiology.

[149]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[150]  C. Schuurmans,et al.  Validating in utero electroporation for the rapid analysis of gene regulatory elements in the murine telencephalon , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[151]  Victoria J Allan,et al.  Light Microscopy Techniques for Live Cell Imaging , 2003, Science.

[152]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[153]  Rafael Yuste,et al.  Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters , 1991, Neuron.

[154]  Rafael Yuste,et al.  Fluorescence microscopy today , 2005, Nature Methods.

[155]  R. Zukin,et al.  Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death , 2007, Trends in Neurosciences.

[156]  J. A. Dani,et al.  Comparison of quantitative calcium flux through NMDA, ATP, and ACh receptor channels. , 1995, Biophysical journal.

[157]  Osamu Shimomura,et al.  The crystal structure of the photoprotein aequorin at 2.3 Å resolution , 2000, Nature.

[158]  W. Denk,et al.  Two types of calcium response limited to single spines in cerebellar Purkinje cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[159]  S. Fucile Ca2+ permeability of nicotinic acetylcholine receptors. , 2004, Cell calcium.

[160]  David Baker,et al.  Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. , 2006, Chemistry & biology.

[161]  Robert M Hoffman,et al.  Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. , 2009, Current opinion in biotechnology.

[162]  M. Duchen,et al.  Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death , 1999, The Journal of physiology.

[163]  R Y Tsien,et al.  Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator , 1982, The Journal of cell biology.

[164]  George J. Augustine,et al.  Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites , 1998, Nature.

[165]  E. Neher,et al.  The use of fura-2 for estimating ca buffers and ca fluxes , 1995, Neuropharmacology.

[166]  R. Zucker Calcium- and activity-dependent synaptic plasticity , 1999, Current Opinion in Neurobiology.

[167]  B. Sakmann,et al.  Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. , 1997, Biophysical journal.

[168]  Ilana B. Witten,et al.  Recombinase-Driver Rat Lines: Tools, Techniques, and Optogenetic Application to Dopamine-Mediated Reinforcement , 2011, Neuron.

[169]  Christian Lüscher,et al.  Group 1 mGluR-Dependent Synaptic Long-Term Depression: Mechanisms and Implications for Circuitry and Disease , 2010, Neuron.

[170]  L. Cohen,et al.  Representation of Odorants by Receptor Neuron Input to the Mouse Olfactory Bulb , 2001, Neuron.

[171]  Stuart G. Cull-Candy,et al.  Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype , 2000, Nature.

[172]  R. Kanzaki,et al.  Ca2+ imaging of identifiable neurons labeled by electroporation in insect brains , 2009, Neuroreport.

[173]  D. Kleinfeld,et al.  All-Optical Histology Using Ultrashort Laser Pulses , 2003, Neuron.

[174]  Jun Li,et al.  Early Development of Functional Spatial Maps in the Zebrafish Olfactory Bulb , 2005, The Journal of Neuroscience.

[175]  R. Yuste,et al.  Stereotyped position of local synaptic targets in neocortex. , 2001, Science.

[176]  W. Denk,et al.  Odour-evoked [Ca2+] transients in mitral cell dendrites of frog olfactory glomeruli. , 2001, The European journal of neuroscience.

[177]  A. Mehta,et al.  In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. , 2004, Journal of neurophysiology.

[178]  Wade G Regehr,et al.  Monitoring Presynaptic Calcium Dynamics in Projection Fibers by In Vivo Loading of a Novel Calcium Indicator , 2000, Neuron.

[179]  W. Denk,et al.  Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing , 2006, Proceedings of the National Academy of Sciences.

[180]  Vanessa A. Bender,et al.  Two Coincidence Detectors for Spike Timing-Dependent Plasticity in Somatosensory Cortex , 2006, The Journal of Neuroscience.

[181]  W. N. Ross,et al.  Changes in Intracellular Free Calcium Concentration during Illumination of Invertebrate Photoreceptors , 1974, The Journal of general physiology.

[182]  T. Murphy,et al.  In Vivo Calcium Imaging Reveals Functional Rewiring of Single Somatosensory Neurons after Stroke , 2008, The Journal of Neuroscience.

[183]  F. Helmchen,et al.  New angles on neuronal dendrites in vivo. , 2007, Journal of neurophysiology.

[184]  Ronald L. Davis,et al.  Detection of Calcium Transients in DrosophilaMushroom Body Neurons with Camgaroo Reporters , 2003, The Journal of Neuroscience.

[185]  W. Denk,et al.  Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[186]  M Segal,et al.  Fast imaging of [Ca]i reveals presence of voltage-gated calcium channels in dendritic spines of cultured hippocampal neurons. , 1995, Journal of neurophysiology.

[187]  Peter Saggau,et al.  Facilitation of L-Type Ca2+ Channels in Dendritic Spines by Activation of β2 Adrenergic Receptors , 2004, The Journal of Neuroscience.

[188]  N. Nishimura,et al.  Deep tissue multiphoton microscopy using longer wavelength excitation. , 2009, Optics express.

[189]  Raymond P. Molloy,et al.  In vivo multiphoton microscopy of deep brain tissue. , 2004, Journal of neurophysiology.

[190]  Baljit S Khakh,et al.  A genetically targeted optical sensor to monitor calcium signals in astrocyte processes , 2010, Nature Neuroscience.

[191]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[192]  Charles R. Gerfen,et al.  Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome Constructs , 2007, The Journal of Neuroscience.

[193]  Andreas T. Schaefer,et al.  Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo , 2011, Nature Neuroscience.

[194]  M. Mayer,et al.  Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones , 1984, Nature.

[195]  Benjamin F. Grewe,et al.  High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision , 2010, Nature Methods.

[196]  Winfried Denk,et al.  Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo , 1999, Nature Neuroscience.

[197]  Laurie D. Burns,et al.  High-speed, miniaturized fluorescence microscopy in freely moving mice , 2008, Nature Methods.

[198]  Lawrence C Katz,et al.  High-Resolution In Vivo Imaging of Hippocampal Dendrites and Spines , 2004, The Journal of Neuroscience.

[199]  R. Tsien A non-disruptive technique for loading calcium buffers and indicators into cells , 1981, Nature.

[200]  Bert Sakmann,et al.  Supralinear Ca2+ Influx into Dendritic Tufts of Layer 2/3 Neocortical Pyramidal Neurons In Vitro and In Vivo , 2003, The Journal of Neuroscience.

[201]  W. N. Ross,et al.  Synergistic Release of Ca2+ from IP3-Sensitive Stores Evoked by Synaptic Activation of mGluRs Paired with Backpropagating Action Potentials , 1999, Neuron.

[202]  O. Shimomura,et al.  The relative rate of aequorin regeneration from apoaequorin and coelenterazine analogues. , 1993, The Biochemical journal.

[203]  A. Konnerth,et al.  NMDA Receptor-Mediated Subthreshold Ca2+ Signals in Spines of Hippocampal Neurons , 2000, The Journal of Neuroscience.

[204]  R Llinás,et al.  Calcium role in depolarization-secretion coupling: an aequorin study in squid giant synapse. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[205]  Florian Engert,et al.  Emergence of Input Specificity of LTP during Development of Retinotectal Connections In Vivo , 2001, Neuron.

[206]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[207]  I. Parker,et al.  Construction of a two-photon microscope for video-rate Ca(2+) imaging. , 2001, Cell calcium.

[208]  R Y Tsien,et al.  Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths. , 1985, Cell calcium.

[209]  Winfried Denk,et al.  Functional organization of sensory input to the olfactory bulb glomerulus analyzed by two-photon calcium imaging , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[210]  Mark A. Jervis,et al.  The Life-cycle , 1996 .

[211]  Masanori Murayama,et al.  In vivo dendritic calcium imaging with a fiberoptic periscope system , 2009, Nature Protocols.

[212]  O. Garaschuk,et al.  Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus , 1998, The Journal of physiology.

[213]  M. Berridge,et al.  Inositol Trisphosphate and Calcium Signaling , 2013 .

[214]  B. Sabatini,et al.  Nonlinear Regulation of Unitary Synaptic Signals by CaV2.3 Voltage-Sensitive Calcium Channels Located in Dendritic Spines , 2007, Neuron.

[215]  Karl Deisseroth,et al.  Optogenetics in Neural Systems , 2011, Neuron.

[216]  R. Reid,et al.  Homeostatic Regulation of Eye-Specific Responses in Visual Cortex during Ocular Dominance Plasticity , 2007, Neuron.

[217]  K. Tóth,et al.  Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons , 1998, Nature Neuroscience.

[218]  A. Konnerth,et al.  Single-Cell RT-PCR and Functional Characterization of Ca2+ Channels in Motoneurons of the Rat Facial Nucleus , 1998, The Journal of Neuroscience.

[219]  E. Cocker,et al.  Fiber-optic fluorescence imaging , 2005, Nature Methods.

[220]  Karel Svoboda,et al.  Monitoring Neural Activity and [Ca2+] with Genetically Encoded Ca2+ Indicators , 2004, The Journal of Neuroscience.

[221]  Bernardo L Sabatini,et al.  Ca2+ signaling in dendritic spines , 2007, Current Opinion in Neurobiology.

[222]  A. Konnerth,et al.  "In vivo" monitoring of neuronal network activity in zebrafish by two-photon Ca2+ imaging , 2003, Pflügers Archiv.

[223]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[224]  Hongbo Jia,et al.  In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons , 2011, Nature Protocols.

[225]  G. Ya. Wiederschain,et al.  The Molecular Probes handbook. A guide to fluorescent probes and labeling technologies , 2011, Biochemistry (Moscow).

[226]  A. Means,et al.  Regulation of the cell cycle by calcium and calmodulin. , 1993, Endocrine reviews.

[227]  B. Sakmann,et al.  Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS , 1995, Neuron.

[228]  R. Yuste,et al.  Dynamics of Spontaneous Activity in Neocortical Slices , 2001, Neuron.

[229]  M. Mank,et al.  Genetically encoded calcium indicators. , 2008, Chemical reviews.

[230]  Da-Ting Lin,et al.  Multi-photon laser scanning microscopy using an acoustic optical deflector. , 2002, Biophysical journal.

[231]  Rafael Yuste,et al.  Protein kinase A regulates calcium permeability of NMDA receptors , 2006, Nature Neuroscience.

[232]  B. Sakmann,et al.  Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[233]  Tullio Pozzan,et al.  Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin , 1992, Nature.

[234]  J. Connor Digital imaging of free calcium changes and of spatial gradients in growing processes in single, mammalian central nervous system cells. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[235]  Godfrey L. Smith,et al.  Characterization of a range of fura dyes with two-photon excitation. , 2004, Biophysical journal.

[236]  R. Yuste,et al.  Neuronal domains in developing neocortex. , 1992, Science.

[237]  D. Kleinfeld,et al.  Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy , 1994, Journal of Neuroscience Methods.

[238]  Yongxin Zhao,et al.  An Expanded Palette of Genetically Encoded Ca2+ Indicators , 2011, Science.

[239]  Michael B. Reiser,et al.  Corrigendum: Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior , 2011, Nature Methods.

[240]  Arthur Konnerth,et al.  A new class of synaptic response involving calcium release in dendritic spines , 1998, Nature.

[241]  A. Gamal,et al.  Miniaturized integration of a fluorescence microscope , 2011, Nature Methods.

[242]  Daniel N. Hill,et al.  Development of Direction Selectivity in Mouse Cortical Neurons , 2011, Neuron.

[243]  Shihab A. Shamma,et al.  Dichotomy of functional organization in the mouse auditory cortex , 2010, Nature Neuroscience.

[244]  B. Sakmann,et al.  Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex , 2000, The Journal of physiology.

[245]  E. Callaway,et al.  Targeted gene delivery to telencephalic inhibitory neurons by directional in utero electroporation , 2005, Journal of Neuroscience Methods.

[246]  Rafael Yuste,et al.  Fast nonnegative deconvolution for spike train inference from population calcium imaging. , 2009, Journal of neurophysiology.

[247]  Oliver Griesbeck,et al.  Genetically Encoded Indicators of Cellular Calcium Dynamics Based on Troponin C and Green Fluorescent Protein* , 2004, Journal of Biological Chemistry.

[248]  Rafael Yuste,et al.  Reverse optical probing (ROPING) of neocortical circuits , 2006, Synapse.

[249]  Stefan Offermanns,et al.  Mammalian G proteins and their cell type specific functions. , 2005, Physiological reviews.

[250]  Shin Nagayama,et al.  In Vivo Simultaneous Tracing and Ca2+ Imaging of Local Neuronal Circuits , 2007, Neuron.

[251]  M. Levene,et al.  Microprisms for in vivo multilayer cortical imaging. , 2009, Journal of neurophysiology.

[252]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[253]  B. Sakmann,et al.  Spine Ca2+ Signaling in Spike-Timing-Dependent Plasticity , 2006, The Journal of Neuroscience.

[254]  James H. Marshel,et al.  New Rabies Virus Variants for Monitoring and Manipulating Activity and Gene Expression in Defined Neural Circuits , 2011, Neuron.

[255]  Rafael Yuste,et al.  Calcium Microdomains in Aspiny Dendrites , 2003, Neuron.

[256]  Takeharu Nagai,et al.  Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano , 2010, Nature Methods.

[257]  A. Konnerth,et al.  Dye loading with patch pipettes. , 2009, Cold Spring Harbor Protocols.

[258]  E. Neher,et al.  Calcium gradients and buffers in bovine chromaffin cells. , 1992, The Journal of physiology.

[259]  Sten Orrenius,et al.  Calcium: Regulation of cell death: the calcium–apoptosis link , 2003, Nature Reviews Molecular Cell Biology.

[260]  B Sakmann,et al.  Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. , 1995, The Journal of physiology.

[261]  Brendon O. Watson,et al.  Modular Propagation of Epileptiform Activity: Evidence for an Inhibitory Veto in Neocortex , 2006, The Journal of Neuroscience.

[262]  E. Friedman Life cycle. , 2003, Health Forum journal.

[263]  E. Carbone,et al.  Studies of calcium influx into squid giant axons with aequorin , 1972, Journal of cellular physiology.

[264]  David S. Greenberg,et al.  Population imaging of ongoing neuronal activity in the visual cortex of awake rats , 2008, Nature Neuroscience.

[265]  Bradley J. Baker,et al.  Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[266]  H Parnas,et al.  Simultaneous Measurement of Intracellular Ca2+ and Asynchronous Transmitter Release from the same Crayfish Bouton , 1997, The Journal of physiology.

[267]  R. Silver,et al.  A compact Acousto-Optic Lens for 2D and 3D femtosecond based 2-photon microscopy. , 2010, Optics express.

[268]  O. Garaschuk,et al.  Cortical calcium waves in resting newborn mice , 2005, Nature Neuroscience.

[269]  F. Helmchen,et al.  Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo , 2004, Nature Methods.

[270]  W. Denk,et al.  Deep tissue two-photon microscopy , 2005, Nature Methods.

[271]  Nathan R. Wilson,et al.  Response Features of Parvalbumin-Expressing Interneurons Suggest Precise Roles for Subtypes of Inhibition in Visual Cortex , 2010, Neuron.

[272]  Efstratios K. Kosmidis,et al.  Imaging Brain Activity With Voltage- and Calcium-Sensitive Dyes , 2005, Cellular and Molecular Neurobiology.

[273]  D. Kullmann,et al.  Heterogeneity and specificity of presynaptic Ca2+ current modulation by mGluRs at individual hippocampal synapses. , 2004, Cerebral cortex.

[274]  P. Saggau,et al.  Random-access Multiphoton (ramp) Microscopy Fast Functional Imaging of Single Neurons Using , 2005 .

[275]  R. M. Siegel,et al.  Two-Photon Imaging of Calcium in Virally Transfected Striate Cortical Neurons of Behaving Monkey , 2010, PloS one.

[276]  Thomas Euler,et al.  Bulk electroporation and population calcium imaging in the adult mammalian retina. , 2011, Journal of neurophysiology.

[277]  Karel Svoboda,et al.  Plasticity of calcium channels in dendritic spines , 2003, Nature Neuroscience.

[278]  P. Cobbold,et al.  Fluorescence and bioluminescence measurement of cytoplasmic free calcium. , 1987, The Biochemical journal.

[279]  Nathalie L Rochefort,et al.  Dendritic organization of sensory input to cortical neurons in vivo , 2010, Nature.

[280]  P. Jonas,et al.  Block of native Ca(2+)‐permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. , 1995, The Journal of physiology.

[281]  Cecilia F. Vaquero,et al.  Red Fluorescent Protein-Aequorin Fusions as Improved Bioluminescent Ca2+ Reporters in Single Cells and Mice , 2011, PloS one.

[282]  O. Shimomura,et al.  Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. , 1962, Journal of cellular and comparative physiology.

[283]  Hongbo Jia,et al.  Calcium imaging in the living brain: prospects for molecular medicine. , 2008, Trends in molecular medicine.

[284]  Fumiaki Imamura,et al.  Optical imaging of postsynaptic odor representation in the glomerular layer of the mouse olfactory bulb. , 2009, Journal of neurophysiology.

[285]  F. Helmchen,et al.  Imaging cellular network dynamics in three dimensions using fast 3D laser scanning , 2007, Nature Methods.

[286]  W. N. Ross,et al.  Mapping calcium transients in the dendrites of Purkinje cells from the guinea‐pig cerebellum in vitro. , 1987, The Journal of physiology.

[287]  R Y Tsien,et al.  Anti-immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes , 1982, The Journal of cell biology.

[288]  Stephen D. Van Hooser,et al.  Experience with moving visual stimuli drives the early development of cortical direction selectivity , 2008, Nature.

[289]  Y Sakaki,et al.  Cloning and sequence analysis of cDNA for the luminescent protein aequorin. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[290]  David S. Greenberg,et al.  Visually evoked activity in cortical cells imaged in freely moving animals , 2009, Proceedings of the National Academy of Sciences.

[291]  K. Svoboda,et al.  Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick , 1997, Neuron.

[292]  Sreekanth H. Chalasani,et al.  Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans , 2007, Nature.

[293]  Beat Schwaller,et al.  Cytosolic Ca 2þ Buffers , 2010 .

[294]  F. Werblin,et al.  Requirement for Cholinergic Synaptic Transmission in the Propagation of Spontaneous Retinal Waves , 1996, Science.

[295]  Stephen J. Smith,et al.  Calcium ions, active zones and synaptic transmitter release , 1988, Trends in Neurosciences.

[296]  P. Brûlet,et al.  In vivo Bioluminescence Imaging of Ca2+ Signalling in the Brain of Drosophila , 2007, PloS one.

[297]  W. Catterall Structure and regulation of voltage-gated Ca2+ channels. , 2000, Annual review of cell and developmental biology.

[298]  S. Tonegawa,et al.  Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice , 1994, Cell.

[299]  Wei Zheng,et al.  Chemical calcium indicators. , 2008, Methods.

[300]  O. Garaschuk,et al.  Fractional Ca2+ currents through somatic and dendritic glutamate receptor channels of rat hippocampal CA1 pyramidal neurones. , 1996, The Journal of physiology.

[301]  Masanori Murayama,et al.  Fiberoptic system for recording dendritic calcium signals in layer 5 neocortical pyramidal cells in freely moving rats. , 2007, Journal of neurophysiology.

[302]  Amanda J Wright,et al.  Adaptive optics for deeper imaging of biological samples. , 2009, Current opinion in biotechnology.

[303]  A. Cheng,et al.  simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing , 2011 .

[304]  R. Samulski,et al.  Adeno-associated virus vectors for gene therapy: more pros than cons? , 2000, Molecular medicine today.

[305]  A F Dulhunty,et al.  EXCITATION–CONTRACTION COUPLING FROM THE 1950s INTO THE NEW MILLENNIUM , 2006, Clinical and experimental pharmacology & physiology.

[306]  R. Yuste,et al.  Calcium imaging of epileptiform events with single-cell resolution. , 2001, Journal of neurobiology.

[307]  S. Wang,et al.  Coincidence detection in single dendritic spines mediated by calcium release , 2000, Nature Neuroscience.

[308]  K. Obata,et al.  Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors , 2009, Neuroscience.

[309]  Alexander Borst,et al.  A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. , 2006, Biophysical journal.

[310]  K E Fogarty,et al.  Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling. , 2001, The Biochemical journal.

[311]  W. Denk,et al.  Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo , 2008, Nature Methods.

[312]  Stephen J Redman,et al.  Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus , 2006, The Journal of physiology.

[313]  Alexander Borst,et al.  Fluorescence Changes of Genetic Calcium Indicators and OGB-1 Correlated with Neural Activity and Calcium In Vivo and In Vitro , 2008, The Journal of Neuroscience.

[314]  Michel A. Picardo,et al.  GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks , 2009, Science.

[315]  M. Kotlikoff,et al.  Genetically encoded Ca2+ indicators: using genetics and molecular design to understand complex physiology , 2007, The Journal of physiology.

[316]  M. Kumar,et al.  Systematic determination of the packaging limit of lentiviral vectors. , 2001, Human gene therapy.

[317]  W. Regehr,et al.  Selective fura-2 loading of presynaptic terminals and nerve cell processes by local perfusion in mammalian brain slice , 1991, Journal of Neuroscience Methods.

[318]  Yosef Yarom,et al.  Disruption of the olivo-cerebellar circuit by Purkinje neuron-specific ablation of BK channels , 2010, Proceedings of the National Academy of Sciences.

[319]  Bert Sakmann,et al.  Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. , 2005, Progress in biophysics and molecular biology.

[320]  T. Takano,et al.  Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo , 2006, Nature Neuroscience.

[321]  Sooyoung Chung,et al.  Highly ordered arrangement of single neurons in orientation pinwheels , 2006, Nature.

[322]  S. Kügler,et al.  Promoters and serotypes: targeting of adeno‐associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo , 2005, Experimental physiology.

[323]  T. Wilson Spinning-disk microscopy systems. , 2010, Cold Spring Harbor protocols.

[324]  D. Tank,et al.  A Miniature Head-Mounted Two-Photon Microscope High-Resolution Brain Imaging in Freely Moving Animals , 2001, Neuron.

[325]  F. Helmchen,et al.  Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. , 2008, Optics express.

[326]  M. Mayer,et al.  Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block , 1995, Neuron.

[327]  I. Nelken,et al.  Functional organization and population dynamics in the mouse primary auditory cortex , 2010, Nature Neuroscience.

[328]  Tobias Bonhoeffer,et al.  Local calcium transients regulate the spontaneous motility of dendritic filopodia , 2005, Nature Neuroscience.

[329]  L. Tauc,et al.  Calcium influx in active Aplysia neurones detected by injected aequorin. , 1973, Nature: New biology.

[330]  Michael J. O'Donovan,et al.  Calcium imaging of network function in the developing spinal cord. , 2005, Cell calcium.

[331]  Nathalie L Rochefort,et al.  Sparsification of neuronal activity in the visual cortex at eye-opening , 2009, Proceedings of the National Academy of Sciences.

[332]  H. Tabata,et al.  Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex , 2001, Neuroscience.