Sticky central limit theorems on open books

Given a probability distribution on an open book (a metric space obtained by gluing a disjoint union of copies of a half-space along their boundary hyperplanes), we define a precise concept of when the Frechet mean (barycenter) is sticky. This nonclassical phenomenon is quantified by a law of large numbers (LLN) stating that the empirical mean eventually almost surely lies on the (codimension 1 and hence measure 0) spine that is the glued hyperplane, and a central limit theorem (CLT) stating that the limiting distribution is Gaussian and supported on the spine. We also state versions of the LLN and CLT for the cases where the mean is nonsticky (i.e., not lying on the spine) and partly sticky (i.e., is, on the spine but not sticky).

[1]  Axel Munk,et al.  Intrinsic MANOVA for Riemannian Manifolds with an Application to Kendall's Space of Planar Shapes , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Louis J. Billera,et al.  Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..

[3]  Ezra Miller,et al.  Averaging metric phylogenetic trees , 2012, ArXiv.

[4]  Zinoviy Landsman,et al.  Asymptotic behavior of sample mean location for manifolds , 1996 .

[5]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[6]  Jonathan E. Taylor,et al.  Inference for eigenvalues and eigenvectors of Gaussian symmetric matrices , 2008, 0901.3290.

[7]  M. Fréchet Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .

[8]  H. Ziezold On Expected Figures and a Strong Law of Large Numbers for Random Elements in Quasi-Metric Spaces , 1977 .

[9]  X. Liu,et al.  A nonparametric approach to 3D shape analysis from digital camera images - I , 2008, J. Multivar. Anal..

[10]  M. Goresky,et al.  Stratified Morse theory , 1988 .

[11]  R. Bhattacharya,et al.  Large sample theory of intrinsic and extrinsic sample means on manifolds--II , 2005, math/0507423.

[12]  Karl-Theodor Sturm,et al.  Probability Measures on Metric Spaces of Nonpositive Curvature , 2003 .

[13]  A. Munk,et al.  Intrinsic shape analysis: Geodesic principal component analysis for Riemannian manifolds modulo Lie group actions. Discussion paper with rejoinder. , 2010 .

[14]  Bojan Basrak,et al.  Limit Theorems for the Inductive Mean on Metric Trees , 2010, Journal of Applied Probability.

[15]  Stephan Huckemann,et al.  Inference on 3D Procrustes Means: Tree Bole Growth, Rank Deficient Diffusion Tensors and Perturbation Models , 2010, 1002.0738.

[16]  Martin Styner,et al.  Intrinsic Regression Models for Manifold-Valued Data. , 2009, Journal of the American Statistical Association.

[17]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[18]  James Stephen Marron,et al.  Extrinsic Data Analysis on Sample Spaces with a Manifold Stratification , 2011 .

[19]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[20]  R. Dougherty,et al.  FALSE DISCOVERY RATE ANALYSIS OF BRAIN DIFFUSION DIRECTION MAPS. , 2008, The annals of applied statistics.

[21]  Stephan Huckemann,et al.  On the meaning of mean shape: manifold stability, locus and the two sample test , 2012 .

[22]  J. Scott Provan,et al.  A Fast Algorithm for Computing Geodesic Distances in Tree Space , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[23]  K. Mardia,et al.  Affine shape analysis and image analysis , 2003 .

[24]  Peter E. Jupp,et al.  Residuals for directional data , 1988 .

[25]  J. W. Bruce,et al.  STRATIFIED MORSE THEORY (Ergebnisse der Mathematik und ihrer Grenzgebiete. (3) 14) , 1989 .