A numerical investigation of the evaporation process of a liquid droplet impinging onto a hot substrate

A numerical investigation of the evaporation process of n-heptane and water liquid droplets impinging onto a hot substrate is pre- sented. Three different temperatures are investigated, covering flow regimes below and above Leidenfrost temperature. The Navier- Stokes equations expressing the flow distribution of the liquid and gas phases, coupled with the Volume of Fluid Method (VOF) for tracking the liquid-gas interface, are solved numerically using the finite volume methodology. Both two-dimensional axisymmetric and fully three-dimensional domains are utilized. An evaporation model coupled with the VOF methodology predicts the vapor blanket height between the evaporating droplet and the substrate, for cases with substrate temperature above the Leidenfrost point, and the for- mation of vapor bubbles in the region of nucleate boiling regime. The results are compared with available experimental data indicating the outcome of the impingement and the droplet shape during the impingement process, while additional information for the droplet evaporation rate and the temperature and vapor concentration fields is provided by the computational model. 2006 Elsevier Ltd. All rights reserved.

[1]  N. Hatta,et al.  Experimental Study of Deformation Mechanism of a Water Droplet Impinging on Hot Metallic Surfaces Above the Leidenfrost Temperature , 1997 .

[2]  R. E. Henry,et al.  Role of the surface in the measurement of the Leidenfrost temperature , 1970 .

[3]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[4]  C. Avedisian,et al.  Numerical solution for film evaporation of a spherical liquid droplet on an isothermal and adiabatic surface , 1987 .

[5]  Dimos Poulikakos,et al.  Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate—II. Experiments , 1996 .

[6]  John D. Bernardin,et al.  Contact angle temperature dependence for water droplets on practical aluminum surfaces , 1997 .

[7]  Hrvoje Jasak,et al.  Error analysis and estimation for the finite volume method with applications to fluid flows , 1996 .

[8]  N. Hatta,et al.  Deformation and Rebounding Processes of a Water Droplet Impinging on a Flat Surface Above Leidenfrost Temperature , 1996 .

[9]  Sanjeev Chandra,et al.  Boiling of droplets on a hot surface in low gravity , 1996 .

[10]  D. Fletcher,et al.  A simple kinetic theory treatment of volatile liquid-gas interfaces , 2001 .

[11]  R. Siegel Effects of reduced gravity on heat transfer. , 1967 .

[12]  D. Poulikakos,et al.  Three-dimensional presolidification heat transfer and fluid dynamics in molten microdroplet deposition , 2002 .

[13]  C. Avedisian,et al.  On the collision of a droplet with a solid surface , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[14]  John D. Bernardin,et al.  Effects of surface roughness on water droplet impact history and heat transfer regimes , 1996 .

[15]  Dimos Poulikakos,et al.  Solidification phenomena in picoliter size solder droplet deposition on a composite substrate , 1997 .

[16]  Z. N. Wu Approximate critical Weber number for the breakup of an expanding torus , 2003 .

[17]  S. Chung,et al.  An experiment on the breakup of impinging droplets on a hot surface , 1996 .

[18]  S. Chandra,et al.  On a three-dimensional volume tracking model of droplet impact , 1999 .

[19]  G. Gogos,et al.  Film evaporation of a spherical droplet over a hot surface: fluid mechanics and heat/mass transfer analysis , 1991, Journal of Fluid Mechanics.

[20]  O. G. Engel,et al.  Waterdrop collisions with solid surfaces , 1955 .

[21]  David F. Fletcher,et al.  A hydrodynamic and thermodynamic simulation of droplet impacts on hot surfaces, Part II: validation and applications , 2001 .

[22]  Javad Mostaghimi,et al.  Interactions between molten metal droplets impinging on a solid surface , 2003 .

[23]  J. Ervin,et al.  Transient pool boiling in microgravity , 1992 .

[24]  C. Avedisian,et al.  Leidenfrost boiling of methanol droplets on hot porous/ceramic surfaces , 1987 .

[25]  Javad Mostaghimi,et al.  Cooling effectiveness of a water drop impinging on a hot surface , 2001 .

[26]  Kenneth J. Bell,et al.  The leidenfrost phenomenon: film boiling of liquid droplets on a flat plate , 1966 .

[27]  Nikos Nikolopoulos,et al.  Normal impingement of a droplet onto a wall film: a numerical investigation , 2005 .

[28]  C. T. Avedisian,et al.  Observations of droplet impingement on a ceramic porous surface , 1992 .

[29]  R. Schrage A theoretical study of interphase mass transfer , 1953 .

[30]  David F. Fletcher,et al.  A hydrodynamic and thermodynamic simulation of droplet impacts on hot surfaces, Part I: theoretical model , 2001 .

[31]  M. C. Yuen,et al.  Evaporation of a liquid droplet on a hot plate , 1991 .

[32]  Arthur E. Bergles,et al.  Augmentation of convective heat and mass transfer , 1970 .

[33]  H. Zhang,et al.  AN ADAPTIVE LEVEL SET METHOD FOR MOVING-BOUNDARY PROBLEMS: APPLICATION TO DROPLET SPREADING AND SOLIDIFICATION , 2000 .

[34]  J. Naber,et al.  Hydrodynamics of Droplet Impingement on a Heated Surface , 1993 .

[35]  W. Rohsenow,et al.  Dispersed flow heat transfer , 1977 .

[36]  Paolo Tartarini,et al.  Effect of liquid-solid contact angle on droplet evaporation , 1996 .

[37]  Johann Gottlob Leidenfrost On the fixation of water in diverse fire , 1966 .

[38]  I. Langmuir THE DISSOCIATION OF HYDROGEN INTO ATOMS. [PART II.] CALCULATION OF THE DEGREE OF DISSOCIATION AND THE HEAT OF FORMATION. , 1915 .

[39]  Javad Mostaghimi,et al.  A three-dimensional model of droplet impact and solidification , 2002 .

[40]  S. L. Manzello,et al.  On the collision dynamics of a water droplet containing an additive on a heated solid surface , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[41]  J. Straub,et al.  POOL BOILING IN A REDUCED GRAVITY FIELD , 1990 .

[42]  L. Wachters,et al.  The heat transfer from a hot wall to impinging water drops in the spheroidal state , 1966 .

[43]  A. Frohn,et al.  The velocity change of ethanol droplets during collision with a wall analysed by image processing , 1993 .

[44]  Kotaro Tanaka,et al.  Observational Study of Pool Boiling under Microgravity , 1992 .

[45]  A. Moriyama,et al.  Deformation Behaviors of a Liquid Droplet Impinging onto Hot Metal Surface , 1980 .

[46]  R. I. Issa,et al.  A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes , 1999 .

[47]  Andreas Theodorakakos,et al.  Simulation of sharp gas–liquid interface using VOF method and adaptive grid local refinement around the interface , 2004 .

[48]  John D. Bernardin,et al.  Mapping of impact and heat transfer regimes of water drops impinging on a polished surface , 1997 .

[49]  Javad Mostaghimi,et al.  Deposition of tin droplets on a steel plate: simulations and experiments , 1998 .