Shared and distinct patterns of genetic structure in two sympatric large decapods

Comparing genetic structure in species with shared spatial ranges and ecological niches can help identify how dissimilar aspects of biology can shape differences in population connectivity. Similarly, where species are widely distributed across heterogeneous environments and major topographic barriers, knowledge of the structuring of populations can help reveal the impacts of factors which limit dispersal and/or drive divergence, aiding conservation management.

[1]  Joshua A. Thia Guidelines for standardising the application of discriminant analysis of principal components to genotype data , 2022, bioRxiv.

[2]  A. Jeffs,et al.  Genome-wide SNPs reveal fine-scale genetic structure in ornate spiny lobster Panulirus ornatus throughout Indo-West Pacific Ocean , 2022, ICES Journal of Marine Science.

[3]  A. C. Jackson Bayesian occupancy modelling of benthic Crustacea and the recovery of the European spiny lobster, Palinurus elephas , 2021, Journal of the Marine Biological Association of the United Kingdom.

[4]  A. Blakeslee,et al.  Population structure and phylogeography of two North Atlantic Littorina species with contrasting larval development , 2021, Marine Biology.

[5]  L. Urban,et al.  Commonly used Hardy–Weinberg equilibrium filtering schemes impact population structure inferences using RADseq data , 2021, bioRxiv.

[6]  S. Manel,et al.  Restricted dispersal in a sea of gene flow , 2021, Proceedings of the Royal Society B.

[7]  C. Linares,et al.  Exploration of the inter‐annual variability and multi‐scale environmental drivers of European spiny lobster, Palinurus elephas (Decapoda: Palinuridae) settlement in the NW Mediterranean , 2021 .

[8]  T. Alcoverro,et al.  Temperature reduces fish dispersal as larvae grow faster to their settlement size. , 2021, The Journal of animal ecology.

[9]  F. Grati,et al.  Population Genetic Structure and Connectivity of the European Lobster Homarus gammarus in the Adriatic and Mediterranean Seas , 2020, Frontiers in Genetics.

[10]  L. Jesson,et al.  Historical human activities reshape evolutionary trajectories across both native and introduced ranges , 2020, Ecology and evolution.

[11]  L. Chauvaud,et al.  Spiny lobster sounds can be detectable over kilometres underwater , 2020, Scientific Reports.

[12]  J. Stevens,et al.  Historical translocations and stocking alter the genetic structure of a Mediterranean lobster fishery , 2020, Ecology and evolution.

[13]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[14]  Nicolas C. Rochette,et al.  Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics , 2019, Molecular ecology.

[15]  J. Stevens,et al.  SNP discovery in European lobster (Homarus gammarus) using RAD sequencing , 2019, Conservation Genetics Resources.

[16]  J. Stevens,et al.  Single nucleotide polymorphisms reveal a genetic cline across the north‐east Atlantic and enable powerful population assignment in the European lobster , 2019, Evolutionary applications.

[17]  F. Andaloro,et al.  Historical separation and present-day structure of common dolphinfish (Coryphaena hippurus) populations in the Atlantic Ocean and Mediterranean Sea , 2018, ICES Journal of Marine Science.

[18]  J. Thioulouse Multivariate Analysis of Ecological Data with ade4 , 2018 .

[19]  A. Mira,et al.  Comparing the catch composition, profitability and discard survival from different trammel net designs targeting common spiny lobster (Palinurus elephas) in a Mediterranean fishery , 2018, PeerJ.

[20]  J. C. van der Molen,et al.  Modeling the Dispersal of Spiny Lobster (Palinurus elephas) Larvae: Implications for Future Fisheries Management and Conservation Measures , 2018, Front. Mar. Sci..

[21]  H. Verbruggen,et al.  Bio‐ORACLE v2.0: Extending marine data layers for bioclimatic modelling , 2018 .

[22]  Thibaut Jombart,et al.  A fast likelihood solution to the genetic clustering problem , 2018, Methods in ecology and evolution.

[23]  C. Schunter,et al.  Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea , 2017, PloS one.

[24]  Carly L. Daniels,et al.  Population genetic structure in European lobsters: implications for connectivity, diversity and hatchery stocking , 2017 .

[25]  I. Coscia,et al.  Population genetic structure of the European lobster (Homarus gammarus) in the Irish Sea and implications for the effectiveness of the first British marine protected area , 2016 .

[26]  L. Bernatchez,et al.  Seascape genomics provides evidence for thermal adaptation and current‐mediated population structure in American lobster (Homarus americanus) , 2016, Molecular ecology.

[27]  Naiara Rodríguez-Ezpeleta,et al.  Population structure of Atlantic mackerel inferred from RAD‐seq‐derived SNP markers: effects of sequence clustering parameters and hierarchical SNP selection , 2016, Molecular ecology resources.

[28]  B. Morales-Nin,et al.  The artisanal fishery of the spiny lobster Palinurus elephas in Cabrera National Park, Spain: Comparative study on traditional and modern traps with trammel nets , 2016 .

[29]  G. Luikart,et al.  Harnessing the power of RADseq for ecological and evolutionary genomics , 2016, Nature Reviews Genetics.

[30]  T. Jombart,et al.  Estimation and Tests of Hierarchical F-Statistics , 2015 .

[31]  N. Polunin,et al.  Fine-scale movement, activity patterns and home-ranges of European lobster Homarus gammarus , 2015 .

[32]  F. Bonhomme,et al.  Range-wide population structure of European sea bass Dicentrarchus labrax , 2015 .

[33]  L. Bernatchez,et al.  RAD genotyping reveals fine‐scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the American lobster (Homarus americanus) , 2015, Molecular ecology.

[34]  A. Jeffs,et al.  A concise review of lobster utilization by worldwide human populations from prehistory to the modern era , 2015 .

[35]  Carly L. Daniels,et al.  Geographic and environmental drivers of fecundity in the European lobster (Homarus gammarus) , 2015 .

[36]  K. Selkoe,et al.  Emergent patterns of population genetic structure for a coral reef community , 2014, Molecular ecology.

[37]  Zhian N. Kamvar,et al.  Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction , 2014, PeerJ.

[38]  E. Poulin,et al.  Phylogeographic Structure in Benthic Marine Invertebrates of the Southeast Pacific Coast of Chile with Differing Dispersal Potential , 2014, PloS one.

[39]  L. Seeb,et al.  Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha) , 2014, Evolutionary applications.

[40]  N. Stenseth,et al.  Conservation, Spillover and Gene Flow within a Network of Northern European Marine Protected Areas , 2013, PloS one.

[41]  E. Pante,et al.  marmap: A Package for Importing, Plotting and Analyzing Bathymetric and Topographic Data in R , 2013, PloS one.

[42]  Angel Amores,et al.  Stacks: an analysis tool set for population genomics , 2013, Molecular ecology.

[43]  M. Ulmestrand,et al.  European lobster subpopulations from limited adult movements and larval retention , 2013 .

[44]  Jason J. Roberts,et al.  Reproductive output and duration of the pelagic larval stage determine seascape-wide connectivity of marine populations. , 2012, Integrative and comparative biology.

[45]  P. Serge,et al.  Detecting immigrants in a highly genetically homogeneous spiny lobster population (Palinurus elephas) in the northwest Mediterranean Sea , 2012, Ecology and evolution.

[46]  Thibaut Jombart,et al.  adegenet 1.3-1: new tools for the analysis of genome-wide SNP data , 2011, Bioinform..

[47]  M. Beaumont,et al.  Effect of oceanographic barriers and overfishing on the population genetic structure of the European spiny lobster (Palinurus elephas) , 2011 .

[48]  A. Cau,et al.  Spillover effects of a Mediterranean marine protected area on the European spiny lobster Palinurus elephas (Fabricius, 1787) resource , 2011 .

[49]  K. Selkoe,et al.  Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal , 2011 .

[50]  A. Amores,et al.  Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences , 2011, G3: Genes | Genomes | Genetics.

[51]  O. Gaggiotti,et al.  Ecology and life history affect different aspects of the population structure of 27 high‐alpine plants , 2011, Molecular ecology.

[52]  E. M. Olsen,et al.  Home range of European lobster (Homarus gammarus) in a marine reserve: implications for future reserve design , 2011 .

[53]  Cajo J. F. ter Braak,et al.  Testing the significance of canonical axes in redundancy analysis , 2011 .

[54]  F. Balloux,et al.  Discriminant analysis of principal components: a new method for the analysis of genetically structured populations , 2010, BMC Genetics.

[55]  L. Zane,et al.  Population structure, demographic history, and selective processes: contrasting evidences from mitochondrial and nuclear markers in the European spiny lobster Palinurus elephas (Fabricius, 1787). , 2010, Molecular phylogenetics and evolution.

[56]  F. Allendorf,et al.  What can genetics tell us about population connectivity? , 2010, Molecular ecology.

[57]  N. Stenseth,et al.  Maternal influences on offspring size variation and viability in wild European lobster Homarus gammarus , 2010 .

[58]  Ray Hilborn,et al.  Net contribution of spillover from a marine reserve to fishery catches , 2010 .

[59]  H. Franke,et al.  Potential impact of climate warming on the recruitment of an economically and ecologically important species, the European lobster (Homarus gammarus) at Helgoland, North Sea , 2010 .

[60]  F. Búchholz,et al.  Vertical positioning and swimming performance of lobster larvae (Homarus gammarus) in an artificial water column at Helgoland, North Sea , 2010 .

[61]  G. Hoarau,et al.  Genetic population structure of marine fish : mismatch between biological and fisheries management units , 2009 .

[62]  A. Sabatini,et al.  Movement patterns of the spiny lobster Palinurus elephas (Fabricius, 1787) from a central western Mediterranean protected area , 2009 .

[63]  A. Shanks Pelagic Larval Duration and Dispersal Distance Revisited , 2009, The Biological Bulletin.

[64]  O. Gaggiotti,et al.  A Genome-Scan Method to Identify Selected Loci Appropriate for Both Dominant and Codominant Markers: A Bayesian Perspective , 2008, Genetics.

[65]  M. Gristina,et al.  Phylogeography of the European spiny lobster (Palinurus elephas): Influence of current oceanographical features and historical processes. , 2008, Molecular Phylogenetics and Evolution.

[66]  Thibaut Jombart,et al.  adegenet: a R package for the multivariate analysis of genetic markers , 2008, Bioinform..

[67]  Ann-Lisbeth Agnalt,et al.  Fecundity of the European lobster (Homarus gammarus) off southwestern Norway after stock enhancement: do cultured females produce as many eggs as wild females? , 2008 .

[68]  T. Patarnello,et al.  Pillars of Hercules: is the Atlantic–Mediterranean transition a phylogeographical break? , 2007, Molecular ecology.

[69]  M. Edkins,et al.  Implications of life history for genetic structure and migration rates of southern African coastal invertebrates: planktonic, abbreviated and direct development , 2007 .

[70]  L. Levin Recent Progress in Understanding Larval Dispersal: New Directions and Digressions , 2022 .

[71]  Steven D. Gaines,et al.  PROPAGULE DISPERSAL IN MARINE AND TERRESTRIAL ENVIRONMENTS: A COMMUNITY PERSPECTIVE , 2003 .

[72]  R. Goñi,et al.  Size at maturity, fecundity and reproductive potential of a protected population of the spiny lobster Palinurus elephas (Fabricius, 1787) from the western Mediterranean , 2003 .

[73]  S. Palumbi POPULATION GENETICS, DEMOGRAPHIC CONNECTIVITY, AND THE DESIGN OF MARINE RESERVES , 2003 .

[74]  D. H. Vuren,et al.  Detectability, philopatry, and the distribution of dispersal distances in vertebrates. , 1996, Trends in ecology & evolution.

[75]  B. Weir,et al.  ESTIMATING F‐STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE , 1984, Evolution; international journal of organic evolution.

[76]  I. Ilyushkina Genome-wide SNP analysis reveals patterns of population differentiation and adaptation of red rock lobster Jasus edwardsii , 2018 .

[77]  W. Revelle psych: Procedures for Personality and Psychological Research , 2017 .

[78]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[79]  P. Ouellet,et al.  EFFECT OF TEMPERATURE ON DEVELOPMENT RATE OF LARVAE FROM COLD-WATER AMERICAN LOBSTER (HOMARUS AMERICANUS) , 2013 .

[80]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[81]  R. Goñi,et al.  Review of the biology, ecology and fisheries of Palinurus spp. species of European waters: Palinurus elephas (Fabricius, 1787) and Palinurus mauritanicus (Gruvel, 1911) , 2005 .

[82]  C. Triantaphyllidis,et al.  Mitochondrial DNA variation in the European lobster (Homarus gammarus) throughout the range , 2005 .

[83]  T. Svåsand,et al.  Sub-arctic Populations of European Lobster, Homarus gammarus, in Northern Norway , 2004, Environmental Biology of Fishes.