A trajectory planning of redundant manipulators based on bilevel optimization

In this paper, a novel trajectory planning approach is proposed for redundant manipulators in the case of several obstacles. The trajectory is discretized and at each step, we search for a new position of the end effector in the Cartesian space to reach the final position. Because of the redundancy, this position can be achieved by an infinity of configurations in the joint space. Thus, we use this property to find the best configuration that allows to avoid obstacles and singularities of the robot. The proposed method is based on a bilevel optimization formulation of the problem and bi-genetic algorithm to solve it. In order to avoid obstacles, we also proposed to manage constraints of the problem dynamically. This technique adapts the number of constraints in the formulation of the problem with the position of the obstacles. Simulation results showed the effectiveness of the proposed method.

[1]  Huashan Liu,et al.  Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints , 2013 .

[2]  万仲平,et al.  A DUAL-RELAX PENALTY FUNCTION APPROACH FOR SOLVING NONLINEAR BILEVEL PROGRAMMING WITH LINEAR LOWER LEVEL PROBLEM , 2011 .

[3]  José António Tenreiro Machado,et al.  Robot Trajectory Planning Using Multi-objective Genetic Algorithm Optimization , 2004, GECCO.

[4]  Rajkumar Roy,et al.  Bi-level optimisation using genetic algorithm , 2002, Proceedings 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS 2002).

[5]  Peter C. Müller,et al.  An on-line Cartesian space obstacle avoidance scheme for robot arms , 1996 .

[6]  Lianfang Tian,et al.  An effective robot trajectory planning method using a genetic algorithm , 2004 .

[7]  Mehdi Pourazady,et al.  Collision avoidance control of redundant manipulators , 1991 .

[8]  S. R. Hejazia,et al.  Linear bilevel programming solution by genetic algorithm , 2002 .

[9]  Yuping Wang,et al.  A Hybrid Genetic Algorithm for Solving a Class of Nonlinear Bilevel Programming Problems , 2006, SEAL.

[10]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[11]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[12]  Chih-Jer Lin,et al.  Motion planning of redundant robots by perturbation method , 2004 .

[13]  José António Tenreiro Machado,et al.  A multi-objective approach for the motion planning of redundant manipulators , 2012, Appl. Soft Comput..

[14]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[15]  Alessandro Gasparetto,et al.  Optimal trajectory planning for industrial robots , 2010, Adv. Eng. Softw..

[16]  Pankaj Wahi,et al.  A direct variational method for planning monotonically optimal paths for redundant manipulators in constrained workspaces , 2013, Robotics Auton. Syst..

[17]  Tiesong Hu,et al.  A penalty function method based on Kuhn-Tucker condition for solving linear bilevel programming , 2007, Appl. Math. Comput..

[18]  Devendra P. Garg,et al.  Optimization techniques applied to multiple manipulators for path planning and torque minimization , 2002 .

[19]  Yan Jiang,et al.  Application of particle swarm optimization based on CHKS smoothing function for solving nonlinear bilevel programming problem , 2013, Appl. Math. Comput..

[20]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[21]  Boubaker Daachi,et al.  Adaptive neural controller for redundant robot manipulators and collision avoidance with mobile obstacles , 2012, Neurocomputing.

[22]  José António Tenreiro Machado,et al.  Manipulator trajectory planning using a MOEA , 2007, Appl. Soft Comput..

[23]  H. Lehtihet,et al.  Minimum cost trajectory planning for industrial robots , 2004 .

[24]  Amit Konar,et al.  Application of Swarm Intelligence to a Two-Fold Optimization Scheme for Trajectory Planning of a Robot Arm , 2011, SEMCCO.

[25]  Zafer Bingul,et al.  Comparative study of performance indices for fundamental robot manipulators , 2006, Robotics Auton. Syst..

[26]  Jonathan F. Bard,et al.  Practical Bilevel Optimization , 1998 .

[27]  A. Gasparetto,et al.  A new method for smooth trajectory planning of robot manipulators , 2007 .

[28]  Sibi Chacko,et al.  Polynomial joint angle arm robot motion planning in complex geometrical obstacles , 2013, Appl. Soft Comput..

[29]  Boubaker Daachi,et al.  Adaptive variable structure controller of redundant robots with mobile/fixed obstacles avoidance , 2013, Robotics Auton. Syst..

[30]  David W. Coit,et al.  Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[31]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[32]  Herminia I. Calvete,et al.  A new approach for solving linear bilevel problems using genetic algorithms , 2008, Eur. J. Oper. Res..

[33]  Jean-Claude Latombe,et al.  On Delaying Collision Checking in PRM Planning: Application to Multi-Robot Coordination , 2002, Int. J. Robotics Res..

[34]  Maarouf Saad,et al.  Modeling and adaptive control of redundant robots , 2006, Math. Comput. Simul..

[35]  Maria da Graça Marcos,et al.  Trajectory planning of redundant manipulators using genetic algorithms , 2009 .

[36]  Ming J. Tsai,et al.  Manipulability of manipulators , 1990 .