Bayesian Networks and Decision Graphs

Probabilistic graphical models and decision graphs are powerful modeling tools for reasoning and decision making under uncertainty. As modeling languages they allow a natural specification of problem domains with inherent uncertainty, and from a computational perspective they support efficient algorithms for automatic construction and query answering. This includes belief updating, finding the most probable explanation for the observed evidence, detecting conflicts in the evidence entered into the network, determining optimal strategies, analyzing for relevance, and performing sensitivity analysis. The book introduces probabilistic graphical models and decision graphs, including Bayesian networks and influence diagrams. The reader is introduced to the two types of frameworks through examples and exercises, which also instruct the reader on how to build these models. The book is a new edition of Bayesian Networks and Decision Graphs by Finn V. Jensen. The new edition is structured into two parts. The first part focuses on probabilistic graphical models. Compared with the previous book, the new edition also includes a thorough description of recent extensions to the Bayesian network modeling language, advances in exact and approximate belief updating algorithms, and methods for learning both the structure and the parameters of a Bayesian network. The second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision processes and partially ordered decision problems. The authors also provide a well-founded practical introduction to Bayesian networks, object-oriented Bayesian networks, decision trees, influence diagrams (and variants hereof), and Markov decision processes. give practical advice on the construction of Bayesian networks, decision trees, and influence diagrams from domain knowledge. give several examples and exercises exploiting computer systems for dealing with Bayesian networks and decision graphs. present a thorough introduction to state-of-the-art solution and analysis algorithms. The book is intended as a textbook, but it can also be used for self-study and as a reference book.

[1]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[2]  Ronald A. Howard,et al.  Dynamic Programming and Markov Processes , 1960 .

[3]  Marvin Minsky,et al.  Steps toward Artificial Intelligence , 1995, Proceedings of the IRE.

[4]  Alvin W Drake,et al.  Observation of a Markov process through a noisy channel , 1962 .

[5]  Howard Raiffa,et al.  Applied Statistical Decision Theory. , 1961 .

[6]  Ronald A. Howard,et al.  Information Value Theory , 1966, IEEE Trans. Syst. Sci. Cybern..

[7]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[8]  Howard Raiffa,et al.  Decision analysis: introductory lectures on choices under uncertainty. 1968. , 1969, M.D.Computing.

[9]  G. Gorry,et al.  Experience with a model of sequential diagnosis. , 2011, Computers and biomedical research, an international journal.

[10]  P. Jones Making Decisions , 1971, Nature.

[11]  Umberto Bertelè,et al.  Nonserial Dynamic Programming , 1972 .

[12]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[13]  D. M. Titterington,et al.  Updating a Diagnostic System using Unconfirmed Cases , 1976 .

[14]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[15]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[16]  Moshe Ben-Bassat,et al.  Myopic Policies in Sequential Classification , 1978, IEEE Transactions on Computers.

[17]  Wolfgang Spohn,et al.  Stochastic independence, causal independence, and shieldability , 1980, J. Philos. Log..

[18]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[19]  Judea Pearl,et al.  Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach , 1982, AAAI.

[20]  Scott M. Olmsted On representing and solving decision problems , 1983 .

[21]  Catriel Beeri,et al.  On the Desirability of Acyclic Database Schemes , 1983, JACM.

[22]  Judea Pearl,et al.  A Computational Model for Causal and Diagnostic Reasoning in Inference Systems , 1983, IJCAI.

[23]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  D. J. Spiegelhalter,et al.  Statistical and Knowledge‐Based Approaches to Clinical Decision‐Support Systems, with an Application in Gastroenterology , 1984 .

[25]  D. Edwards,et al.  A fast procedure for model search in multidimensional contingency tables , 1985 .

[26]  Max Henrion,et al.  Propagating uncertainty in bayesian networks by probabilistic logic sampling , 1986, UAI.

[27]  Ross D. Shachter Evaluating Influence Diagrams , 1986, Oper. Res..

[28]  Judea Pearl,et al.  Fusion, Propagation, and Structuring in Belief Networks , 1986, Artif. Intell..

[29]  D. G. Swain Computer aided diagnosis of acute abdominal pain , 1986 .

[30]  G. Sutton Computer aided diagnosis of acute abdominal pain , 1986, British medical journal.

[31]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[32]  Dan Geiger,et al.  On the logic of causal models , 2013, UAI.

[33]  Jayant Kalagnanam,et al.  A comparison of decision alaysis and expert rules for sequential diagnosis , 2013, UAI.

[34]  Finn Verner Jensen,et al.  MUNIN: an expert EMG assistant , 1988 .

[35]  Gregory F. Cooper,et al.  A Method for Using Belief Networks as Influence Diagrams , 2013, UAI 1988.

[36]  Judea Pearl,et al.  Causal networks: semantics and expressiveness , 2013, UAI.

[37]  Ross D. Shachter,et al.  Simulation Approaches to General Probabilistic Inference on Belief Networks , 2013, UAI.

[38]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[39]  Kuo-Chu Chang,et al.  Weighing and Integrating Evidence for Stochastic Simulation in Bayesian Networks , 2013, UAI.

[40]  Frank Jensen,et al.  Analysis in HUGIN of data conflict , 1990, UAI.

[41]  Judea Pearl,et al.  Equivalence and Synthesis of Causal Models , 1990, UAI.

[42]  Ross D. Shachter,et al.  Dynamic programming and influence diagrams , 1990, IEEE Trans. Syst. Man Cybern..

[43]  Prakash P. Shenoy,et al.  Probability propagation , 1990, Annals of Mathematics and Artificial Intelligence.

[44]  Steffen L. Lauritzen,et al.  Bayesian updating in causal probabilistic networks by local computations , 1990 .

[45]  David Heckerman,et al.  Probabilistic similarity networks , 1991, Networks.

[46]  David J. Spiegelhalter,et al.  Sequential updating of conditional probabilities on directed graphical structures , 1990, Networks.

[47]  Stuart L. Crawford,et al.  Constructor: A System for the Induction of Probabilistic Models , 1990, AAAI.

[48]  P. Green On Use of the EM Algorithm for Penalized Likelihood Estimation , 1990 .

[49]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[50]  Gregory F. Cooper,et al.  A Bayesian Method for Constructing Bayesian Belief Networks from Databases , 1991, UAI.

[51]  Kathryn B. Laskey Conflict and Surprise: Heuristics for Model Revision , 1994, UAI.

[52]  S. Andreassen,et al.  Diagnostic function of the microhuman prototype of the expert system--MUNIN. , 1992, Electroencephalography and clinical neurophysiology.

[53]  Steffen L. Lauritzen,et al.  aHUGIN: A System Creating Adaptive Causal Probabilistic Networks , 1992, UAI.

[54]  Prakash P. Shenoy,et al.  Valuation-Based Systems for Bayesian Decision Analysis , 1992, Oper. Res..

[55]  A. P. Dawid,et al.  Applications of a general propagation algorithm for probabilistic expert systems , 1992 .

[56]  D. Heckerman,et al.  Toward Normative Expert Systems: Part I The Pathfinder Project , 1992, Methods of Information in Medicine.

[57]  Uffe Kjærulff,et al.  A Computational Scheme for Reasoning in Dynamic Probabilistic Networks , 1992, UAI.

[58]  Henri Jacques Suermondt,et al.  Explanation in Bayesian belief networks , 1992 .

[59]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[60]  A. Dawid,et al.  Hyper Markov Laws in the Statistical Analysis of Decomposable Graphical Models , 1993 .

[61]  Kathryn B. Laskey Sensitivity analysis for probability assessments in Bayesian networks , 1995, IEEE Trans. Syst. Man Cybern..

[62]  Bruce D'Ambrosio,et al.  Local Expression Languages for Probabilistic Dependence: a Preliminary Report , 1994, UAI 1994.

[63]  Frank Jensen,et al.  From Influence Diagrams to junction Trees , 1994, UAI.

[64]  Walter R. Gilks,et al.  A Language and Program for Complex Bayesian Modelling , 1994 .

[65]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[66]  Wai Lam,et al.  LEARNING BAYESIAN BELIEF NETWORKS: AN APPROACH BASED ON THE MDL PRINCIPLE , 1994, Comput. Intell..

[67]  Pierre Ndilikilikesha,et al.  Potential influence diagrams , 1994, Int. J. Approx. Reason..

[68]  Wray L. Buntine Operations for Learning with Graphical Models , 1994, J. Artif. Intell. Res..

[69]  Stuart J. Russell,et al.  Local Learning in Probabilistic Networks with Hidden Variables , 1995, IJCAI.

[70]  Marek J. Druzdzel,et al.  Elicitation of Probabilities for Belief Networks: Combining Qualitative and Quantitative Information , 1995, UAI.

[71]  Young-Gyun Kim,et al.  On the Detection of Conflicts in Diagnostic Bayesian Networks Using Abstraction , 1995, UAI.

[72]  R. M. Oliver,et al.  Representation and solution of decision problems using sequential decision diagrams , 1995 .

[73]  S. Lauritzen The EM algorithm for graphical association models with missing data , 1995 .

[74]  David Heckerman,et al.  Decision-theoretic troubleshooting , 1995, CACM.

[75]  Christopher Meek,et al.  Strong completeness and faithfulness in Bayesian networks , 1995, UAI.

[76]  Prakash P. Shenoy,et al.  Representing and Solving Asymmetric Decision Problems Using Valuation Networks , 1995, AISTATS.

[77]  Finn Verner Jensen,et al.  Sensitivity Analysis in Bayesian Networks , 1995, ECSQARU.

[78]  Wray L. Buntine A Guide to the Literature on Learning Probabilistic Networks from Data , 1996, IEEE Trans. Knowl. Data Eng..

[79]  A. Hadi,et al.  A new method for efficient symbolic propagation in discrete Bayesian networks , 1996 .

[80]  David Heckerman,et al.  Asymptotic Model Selection for Directed Networks with Hidden Variables , 1996, UAI.

[81]  Nir Friedman,et al.  Learning Bayesian Networks with Local Structure , 1996, UAI.

[82]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[83]  Rina Dechter,et al.  Bucket elimination: A unifying framework for probabilistic inference , 1996, UAI.

[84]  Avi Pfeffer,et al.  Object-Oriented Bayesian Networks , 1997, UAI.

[85]  Enrique F. Castillo,et al.  Sensitivity analysis in discrete Bayesian networks , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[86]  Finn Verner Jensen,et al.  Myopic Value of Information in Influence Diagrams , 1997, UAI.

[87]  Nir Friedman,et al.  The Bayesian Structural EM Algorithm , 1998, UAI.

[88]  Nevin Lianwen Zhang,et al.  Probabilistic Inference in Influence Diagrams , 1998, Comput. Intell..

[89]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[90]  L. C. van der Gaag,et al.  Practicable sensitivity analysis of Bayesian belief networks , 1998 .

[91]  Xavier Boyen,et al.  Tractable Inference for Complex Stochastic Processes , 1998, UAI.

[92]  David A. Bell,et al.  Learning Bayesian networks from data: An information-theory based approach , 2002, Artif. Intell..

[93]  Gordon B. Hazen,et al.  Sensitivity Analysis and the Expected Value of Perfect Information , 1998, Medical decision making : an international journal of the Society for Medical Decision Making.

[94]  Michael I. Jordan Graphical Models , 2003 .

[95]  Anders L. Madsen,et al.  LAZY Propagation: A Junction Tree Inference Algorithm Based on Lazy Evaluation , 1999, Artif. Intell..

[96]  Ross D. Shachter Efficient Value of Information Computation , 1999, UAI.

[97]  Anders L. Madsen,et al.  Lazy Evaluation of Symmetric Bayesian Decision Problems , 1999, UAI.

[98]  David J. Spiegelhalter,et al.  Probabilistic Networks and Expert Systems , 1999, Information Science and Statistics.

[99]  Finn Verner Jensen,et al.  Gradient Descent Training of Bayesian Networks , 1999, ESCQARU.

[100]  Thomas D. Nielsen,et al.  Welldefined Decision Scenarios , 1999, UAI.

[101]  Sebastian Thrun,et al.  Bayesian Network Induction via Local Neighborhoods , 1999, NIPS.

[102]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[103]  Nir Friedman,et al.  Being Bayesian about Network Structure , 2000, UAI.

[104]  Linda C. van der Gaag,et al.  Making Sensitivity Analysis Computationally Efficient , 2000, UAI.

[105]  Pierre-Henri Wuillemin,et al.  Top-Down Construction and Repetetive Structures Representation in Bayesian Networks , 2000, FLAIRS.

[106]  Dennis Nilsson,et al.  Probabilities of Future Decisions , 2000 .

[107]  Steffen L. Lauritzen,et al.  Evaluating Influence Diagrams using LIMIDs , 2000, UAI.

[108]  Robert G. Cowell,et al.  Conditions Under Which Conditional Independence and Scoring Methods Lead to Identical Selection of Bayesian Network Models , 2001, UAI.

[109]  Adnan Darwiche,et al.  Recursive conditioning , 2001, Artif. Intell..

[110]  David Maxwell Chickering,et al.  Optimal Structure Identification With Greedy Search , 2002, J. Mach. Learn. Res..

[111]  David Maxwell Chickering,et al.  Finding Optimal Bayesian Networks , 2002, UAI.

[112]  Finn Verner Jensen,et al.  Unconstrained Influence Diagrams , 2002, UAI.

[113]  Jirí Vomlel,et al.  Troubleshooting: NP-hardness and solution methods , 2003, Soft Comput..