Reversible Space Equals Deterministic Space

This paper describes the simulation of an S(n) space-bounded deterministic Turing machine by a reversible Turing machine operating in space S(n). It thus answers a question posed by C. Bennett (1989) and refutes the conjecture, made by M. Li and P. Vitanyi (1996), that any reversible simulation of an irreversible computation must obey Bennett's reversible pebble game rules.

[1]  Gilles Brassard,et al.  A Quantum Jump in Computer Science , 1995, Computer Science Today.

[2]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[3]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[4]  Noam Nisan,et al.  RL⊆SC , 1992, STOC '92.

[5]  Peter W. Shor,et al.  Algorithms for Quantum Computation: Discrete Log and Factoring (Extended Abstract) , 1994, FOCS 1994.

[6]  Stephen A. Cook,et al.  Problems Complete for Deterministic Logarithmic Space , 1987, J. Algorithms.

[7]  Michael Sipser,et al.  Halting space-bounded computations , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[8]  Alan T. Sherman,et al.  A Note on Bennett's Time-Space Tradeoff for Reversible Computation , 1990, SIAM J. Comput..

[9]  Endre Szemerédi,et al.  Undirected Connectivity in O(log ^1.5 n) Space , 1992, FOCS.

[10]  E. Szemerédi,et al.  Undirected connectivity in O(log/sup 1.5/n) space , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[11]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[12]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[13]  Christos H. Papadimitriou,et al.  Symmetric Space-Bounded Computation , 1982, Theor. Comput. Sci..

[14]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[15]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[16]  Ming Li,et al.  Reversible simulation of irreversible computation , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).

[17]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[18]  Anthony J. G. Hey,et al.  Feynman Lectures on Computation , 1996 .

[19]  Ming Li,et al.  Reversibility and adiabatic computation: trading time and space for energy , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  Christos H. Papadimitriou,et al.  Reversible simulation of space-bounded computations , 1995 .

[21]  Ming Li,et al.  Reversible Simulation of Irreversible Computation by Pebble Games , 1997, ArXiv.

[22]  Avi Wigderson,et al.  On span programs , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[23]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.