Making Implicit Knowledge Explicit - Acquisition of Plant Staff's Mental Models as a Basis for Developing a Decision Support System

Monitoring of industrial production plants is a complex task, which requires a hight level of knowledge about the interrelations in the production process in many cases. This knowledge on the one hand, is available as handbooks, process models or process data. On the other hand, the plant’s staff has implicit knowledge in the form of mental models. Experienced process engineers and operators have improved these mental models over years of working with the process.

[1]  C. Canonne,et al.  Play together, think alike: Shared mental models in expert music improvisers , 2016 .

[2]  K. J. Craik,et al.  The nature of explanation , 1944 .

[3]  K. May,et al.  Interview Techniques in Qualitative Research: Concerns and Challenges , 1991 .

[4]  Norbert Bach Mentale Modelle als Basis von Implementierungsstrategien , 2000 .

[5]  Tatiana Gavrilova,et al.  Knowledge Elicitation Techniques in a Knowledge Management Context , 2012, J. Knowl. Manag..

[6]  Andreas Butz,et al.  Mensch-Maschine-Interaktion , 2014 .

[7]  Johan de Kleer and John Seely Brown,et al.  Assumptions and Ambiguities in Mechanistic Mental Models , 2014 .

[8]  John S. Edwards,et al.  Knowledge elicitation and knowledge representation in a large domain with multiple experts , 1995 .

[9]  Stefan N. Groesser,et al.  Mental models of dynamic systems: taking stock and looking ahead , 2012 .

[10]  Janina Sutter Grafische Visualisierungen bei der Stellenübergabe , 2016 .

[11]  Neil A. M. Maiden,et al.  ACRE: selecting methods for requirements acquisition , 1996, Softw. Eng. J..

[12]  Norbert Bach Mentale Modelle als Basis von Implementierungsstrategien: Konzepte für ein erfolgreiches Change Management , 2010 .

[13]  Neil A. M. Maiden,et al.  Problem domain categories in requirements engineering , 1998, Int. J. Hum. Comput. Stud..

[14]  Maria Isabel Sánchez Segura,et al.  Combining Software Engineering Elicitation Technique with the Knowledge Management Lifecycle , 2012, Int. J. Knowl. Soc. Res..

[15]  Muhammad Ismail,et al.  Requirement Engineering : A comparision between Traditional requirement elicitation techniqes with user story , 2011 .

[16]  Birgit Vogel-Heuser,et al.  Operator Knowledge Inclusion in Data-Mining Approaches for Product Quality Assurance using Cause-Effect Graphs , 2017 .