Brzozowski's Derivatives Extended to Multiplicities

Our aim is to study the set of K-rational expressions describing rational series. More precisely we are concerned with the definition of quotients of this set by coarser and coarser congruences which lead to an extension - in the case of multiplicities - of some classical results stated in the Boolean case. In particular, analogues of the well known theorems of Brzozowski and Antimirov are provided in this frame.

[1]  Christophe Reutenauer,et al.  Un critère de rationalité provenant de la géométrie non commutative , 1997 .

[2]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[3]  Daniel Krob,et al.  Partially Commutative Magnus Transformations , 1993, Int. J. Algebra Comput..

[4]  Daniel Krob Models of a K-Rational Identity System , 1992, J. Comput. Syst. Sci..

[5]  Daniel Krob Differentiation of k-Rational Expressions , 1992, Int. J. Algebra Comput..

[6]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[7]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[8]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[9]  Janusz A. Brzozowski,et al.  Derivatives of Regular Expressions , 1964, JACM.

[10]  S. Lane Categories for the Working Mathematician , 1971 .

[11]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[12]  Djelloul Ziadi,et al.  From Mirkin's Prebases to Antimirov's Word Partial Derivatives , 2001, Fundam. Informaticae.

[13]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[14]  Djelloul Ziadi,et al.  Canonical derivatives, partial derivatives and finite automaton constructions , 2002, Theor. Comput. Sci..

[15]  J. Berstel,et al.  Theory of codes , 1985 .

[16]  Mehryar Mohri,et al.  A Rational Design for a Weighted Finite-State Transducer Library , 1997, Workshop on Implementing Automata.

[17]  Jarkko Kari,et al.  Finite State Transformations of Images , 1995, ICALP.

[18]  Valentin M. Antimirov Partial Derivatives of Regular Expressions and Finite Automaton Constructions , 1996, Theor. Comput. Sci..

[19]  Djelloul Ziadi,et al.  New Finite Automaton Constructions Based on Canonical Derivatives , 2000, CIAA.

[20]  Éric Laugerotte,et al.  Direct and dual laws for automata with multiplicities , 2001, Theor. Comput. Sci..