Parameter Augmentation for Basic Hypergeometric Series, II

In a previous paper, we explored the idea of parameter augmentation for basic hypergeometric series, which provides a method of provingq-summation and integral formula based special cases obtained by reducing some parameters to zero. In the present paper, we shall mainly deal with parameter augmentation forq-integrals such as the Askey?Wilson integral, the Nassrallah?Rahman integral, theq-integral form of Sears transformation, and Gasper's formula of the extension of the Askey?Roy integral. The parameter augmentation is realized by another operator, which leads to considerable simplications of some well knownq-summation and transformation formulas. A brief treatment of the Rogers?Szego polynomials is also given.

[1]  Steven Roman,et al.  More on the umbral calculus, with emphasis on the q-umbral calculus , 1985 .

[2]  Johann Cigler,et al.  Operatormethoden fürq-Identitäten , 1979 .

[3]  Clemens Markett,et al.  Linearization of the product of symmetric orthogonal polynomials , 1994 .

[4]  George E. Andrews,et al.  Applications of Basic Hypergeometric Functions , 1974 .

[5]  Dennis Stanton,et al.  Bijective proofs of basic hypergeometric series identities , 1987 .

[6]  Richard Askey,et al.  The Very Well Poised 6 ? 6 , 1979 .

[7]  W. N. Bailey SERIES OF HYPERGEOMETRIC TYPE WHICH ARE INFINITE IN BOTH DIRECTIONS , 1936 .

[8]  George E. Andrews,et al.  Ramanujan's “Lost” Notebook. I. Partial θ-functions , 1981 .

[9]  George E. Andrews,et al.  A simple proof of Ramanujan’s summation of the1ψ1 , 1978 .

[10]  Natig M. Atakishiyev,et al.  On the Rogers-Szego polynomials , 1994 .

[11]  G. Rota,et al.  On the Foundations of Combinatorial Theory IV Finite Vector Spaces and Eulerian Generating Functions , 1970 .

[12]  Willard Miller,et al.  Symmetry techniques for $q$-series: Askey-Wilson polynomials , 1989 .

[13]  Doron Zeilberger,et al.  An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .

[14]  Richard Askey,et al.  The very well poised ₆₆. II , 1984 .

[15]  George E. Andrews $q$-identities of Auluck, Carlitz, and Rogers , 1966 .

[16]  Chu Wenchang,et al.  Basic hypergeometric identities: An introductory revisiting through the Carlitz inversions , 1995 .

[17]  L. J. Rogers On the Expansion of some Infinite Products , 1892 .

[18]  Gian-Carlo Rota,et al.  Theory and application of special functions , 1977 .

[19]  A. Lakin,et al.  Two Proofs of the 6 Ψ 6 Summation Theorem , 1956 .

[20]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[21]  W. N. Bailey ON THE BASIC BILATERAL HYPERGEOMETRIC SERIES 2 ψ 2 , 1950 .

[22]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[23]  P. Erdos,et al.  Studies in Pure Mathematics , 1983 .

[24]  L. J. Rogers Second Memoir on the Expansion of certain Infinite Products , 1893 .

[25]  George E. Andrews,et al.  q-series : their development and application in analysis, number theory, combinatorics, physics, and computer algebra , 1986 .

[26]  Richard Askey,et al.  The very well poised , 1979 .

[27]  L. J. Rogers On a Three‐fold Symmetry in the Elements of Heine's Series , 1892 .

[28]  George E. Andrews,et al.  Ramunujan's “Lost” Notebook III. The Rogers-Ramanujan continued fraction , 1981 .

[29]  George E. Andrews,et al.  Ramanujan's lost notebook , 1987 .

[30]  Gian-Carlo Rota,et al.  THE NUMBER OF SUBSPACES OF A VECTOR SPACE. , 1969 .

[31]  Doron Zeilberger A q-Foata Proof of the q-Saalschütz Identity , 1987, Eur. J. Comb..

[32]  W. Hahn Über Orthogonalpolynome, die q-Differenzengleichungen genügen , 1949 .

[33]  Gérard Viennot,et al.  The Combinatorics of q-Hermite polynomials and the Askey - Wilson Integral , 1987, Eur. J. Comb..

[34]  Richard Askey,et al.  A generalization of ultraspherical polynomials , 1983 .

[35]  George Gasper,et al.  q-EXTENSIONS OF BARNES', CAUCHY'S, AND EULER'S BETA INTEGRALS , 1989 .

[36]  Mizan Rahman,et al.  Barnes and Ramanujan-type integrals on the q -linear lattice , 1994 .

[37]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[38]  Mizan Rahman,et al.  Projection Formulas, a Reproducing Kernel and a Generating Function for q-Wilson Polynomials , 1985 .

[39]  G. Andrews The Theory of Partitions: Frontmatter , 1976 .

[40]  George E. Andrews On a transformation of bilateral series with applications , 1970 .

[41]  Mourad E. H. Ismail,et al.  On the Askey-Wilson and Rogers Polynomials , 1988, Canadian Journal of Mathematics.

[42]  Richard Askey,et al.  Ramanujan's Extensions of the Gamma and Beta Functions , 1980 .

[43]  Mizan Rahman,et al.  A simple evaluation of Askey and Wilson’s $q$-beta integral , 1984 .

[44]  George E. Andrews,et al.  Another q-extension of the beta function , 1981 .

[45]  George E. Andrews,et al.  On the Foundations of Combinatorial Theory V, Eulerian Differential Operators , 1971 .

[46]  George E. Andrews,et al.  Problems and Prospects for Basic Hypergeometric Functions , 1975 .

[47]  Richard Askey,et al.  A q-EXTENSION OF CAUCHY'S FORM OF THE BETA INTEGRAL , 1981 .

[48]  G. Rota,et al.  Finite operator calculus , 1975 .

[49]  W. N. Bailey ON THE ANALOGUE OF DIXON'S THEOREM FOR BILATERAL BASIC HYPERGEOMETRIC SERIES , 1950 .