Electrostatic solitary ion waves in dense electron-positron-ion magnetoplasma

The nonlinear coupled ion-acoustic and ion-cyclotron waves propagating obliquely to the external magnetic field in dense collisionless electron-positron-ion magnetoplasma are investigated using Sagdeev potential method. A semiclassical approach is used. Electrons and positrons are treated as degenerate Fermi gases described by Thomas–Fermi density distribution and ions behave as classical gas. It is found that the presence of degenerate positrons in a dense Thomas–Fermi plasma significantly modifies the structure of solitary waves by restricting the electrostatic potential to a certain maximum value which depends upon the concentration of positrons in the system. It is also noted that only subsonic humplike solitary waves can exist and for a given angle of propagation, the presence of degenerate positrons diminishes the amplitude as well as width of the solitary wave.

[1]  F. Haas,et al.  Nonlinear structures: Explosive, soliton, and shock in a quantum electron-positron-ion magnetoplasma , 2008, 0907.3601.

[2]  S. Mahmood,et al.  Ion acoustic solitary waves with adiabatic ions in magnetized electron-positron-ion plasmas , 2008 .

[3]  P. Shukla,et al.  Exact electrostatic solitons in a magnetoplasma with degenerate electrons , 2008 .

[4]  Shujaat Ali Khan,et al.  Linear and nonlinear quantum ion-acoustic waves in dense magnetized electron-positron-ion plasmas , 2008 .

[5]  P. Shukla,et al.  Ion-acoustic solitary waves in a dense pair-ion plasma containing degenerate electrons and positrons , 2008 .

[6]  A. Dubinov,et al.  Nonlinear isothermal waves in a degenerate electron plasma , 2008 .

[7]  A. M. Mirza,et al.  Cylindrical and spherical ion-acoustic solitons in adiabatically hot electron–positron–ion plasmas , 2007 .

[8]  A. Dubinov,et al.  Nonlinear theory of ion-acoustic waves in an ideal plasma with degenerate electrons , 2007 .

[9]  A. P. Misra,et al.  Nonlinear wave modulation in a quantum magnetoplasma , 2007 .

[10]  D. Lai,et al.  Physics of strongly magnetized neutron stars , 2006, astro-ph/0606674.

[11]  P. Shukla,et al.  Nonlinear collective effects in photon-photon and photon-plasma interactions , 2006, hep-ph/0602123.

[12]  H. Shah,et al.  Nonlinear Zakharov–Kuznetsov equation for obliquely propagating two-dimensional ion-acoustic solitary waves in a relativistic, rotating magnetized electron-positron-ion plasma , 2005 .

[13]  N. Woolsey,et al.  Laboratory plasma astrophysics simulation experiments using lasers , 2004 .

[14]  S. Mahmood,et al.  Ion acoustic solitary wave in homogeneous magnetized electron-positron-ion plasmas , 2003 .

[15]  F. Haas,et al.  Self-consistent fluid model for a quantum electron gas , 2001, cond-mat/0203394.

[16]  D. Lai Matter in strong magnetic fields , 2000, astro-ph/0009333.

[17]  V. Zheleznyakov Space plasma under extreme conditions , 1997 .

[18]  Y. Nejoh The effect of the ion temperature on large amplitude ion‐acoustic waves in an electron–positron–ion plasma , 1996 .

[19]  S. Vladimirov,et al.  Ion‐acoustic solitons in electron–positron–ion plasmas , 1995 .

[20]  Shukla,et al.  Pair production in a strong wake field driven by an intense short laser pulse. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[21]  Ajoy Ghatak,et al.  An Introduction to Equations of State: Theory and Applications , 1986 .

[22]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[23]  Saul A. Teukolsky,et al.  White Dwarfs and Neutron Stars: The Physics of Compact Objects , 1983 .

[24]  L. Girifalco Statistical physics of materials , 1973 .

[25]  Ronald C. Davidson,et al.  Methods in Nonlinear Plasma Theory , 1973 .

[26]  E. Fermi Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente , 1928 .

[27]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.