A manned Mars artificial gravity vehicle

Data are presented on an artificial-gravity vehicle that is being designed for a manned Mars mission, using a 'split-mission' concept, in which an unmanned cargo vehicle is sent earlier and stored in a Mars orbit for a rendezvous with a manned vehicle about 1.5 years later. Special attention is given to the vehicle trajectory and configuration, the tether design, and the vehicle weight and launch requirements. It is shown that an artificial-G vehicle for a manned Mars missions is feasible technically and programmatically. Using an artificial-G vehicle instead of a zero-G vehicle for the piloted portion of a split mission provides physiological and human-factor-related benefits, does not eliminate requirements for zero-G countermeasures research (since zero-G is an abort mode), and could possibly reduce some life science activities. Diagrams are included.