The HAUS Complex Is a Key Regulator of Non-centrosomal Microtubule Organization during Neuronal Development

[1]  C. Hoogenraad,et al.  Differentiation between Oppositely Oriented Microtubules Controls Polarized Neuronal Transport , 2017, Neuron.

[2]  C. Hoogenraad,et al.  Myosin-V Induces Cargo Immobilization and Clustering at the Axon Initial Segment , 2017, Front. Cell. Neurosci..

[3]  C. Hoogenraad,et al.  Dynamic Palmitoylation Targets MAP6 to the Axon to Promote Microtubule Stabilization during Neuronal Polarization , 2017, Neuron.

[4]  P. Dráber,et al.  Regulation of microtubule nucleation mediated by γ-tubulin complexes , 2017, Protoplasma.

[5]  E. Soriano,et al.  Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity , 2016, Nature Communications.

[6]  Hedi Peterson,et al.  g:Profiler—a web server for functional interpretation of gene lists (2016 update) , 2016, Nucleic Acids Res..

[7]  A. Holtmaat,et al.  Dendrites In Vitro and In Vivo Contain Microtubules of Opposite Polarity and Axon Formation Correlates with Uniform Plus-End-Out Microtubule Orientation , 2016, The Journal of Neuroscience.

[8]  C. Hoogenraad,et al.  TRIM46 Controls Neuronal Polarity and Axon Specification by Driving the Formation of Parallel Microtubule Arrays , 2015, Neuron.

[9]  K. White,et al.  Centrosomin represses dendrite branching by orienting microtubule nucleation , 2015, Nature Neuroscience.

[10]  Lukas C. Kapitein,et al.  Building the Neuronal Microtubule Cytoskeleton , 2015, Neuron.

[11]  M. Maruoka,et al.  Multitarget super-resolution microscopy with high-density labeling by exchangeable probes , 2015, Nature Methods.

[12]  Carlos Sánchez-Huertas,et al.  The Augmin Connection in the Geometry of Microtubule Networks , 2015, Current Biology.

[13]  C. Hoogenraad,et al.  Microtubule Minus-End-Targeting Proteins , 2015, Current Biology.

[14]  Bo Liu,et al.  Augmin Triggers Microtubule-Dependent Microtubule Nucleation in Interphase Plant Cells , 2014, Current Biology.

[15]  Arne V. Blackman,et al.  Neuronal morphometry directly from bitmap images , 2014, Nature Methods.

[16]  S. Munro,et al.  γ-Tubulin controls neuronal microtubule polarity independently of Golgi outposts , 2014, Molecular biology of the cell.

[17]  N. Lecland,et al.  The dynamics of microtubule minus ends in the human mitotic spindle , 2014, Nature Cell Biology.

[18]  Eugene A. Katrukha,et al.  Microtubule Minus-End Binding Protein CAMSAP2 Controls Axon Specification and Dendrite Development , 2014, Neuron.

[19]  X. Wang,et al.  GM130 Is Required for Compartmental Organization of Dendritic Golgi Outposts , 2014, Current Biology.

[20]  J. McIntosh,et al.  Augmin-dependent microtubule nucleation at microtubule walls in the spindle , 2013, The Journal of cell biology.

[21]  J. P. Ferreira,et al.  Tuning gene expression with synthetic upstream open reading frames , 2013, Proceedings of the National Academy of Sciences.

[22]  T. Mitchison,et al.  Branching Microtubule Nucleation in Xenopus Egg Extracts Mediated by Augmin and TPX2 , 2013, Cell.

[23]  A. Scholten,et al.  On Terminal Alkynes That Can React with Active-Site Cysteine Nucleophiles in Proteases , 2013, Journal of the American Chemical Society.

[24]  Y. Jan,et al.  Golgi Outposts Shape Dendrite Morphology by Functioning as Sites of Acentrosomal Microtubule Nucleation in Neurons , 2012, Neuron.

[25]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[26]  M. Rolls,et al.  Microtubules are organized independently of the centrosome in Drosophila neurons , 2011, Neural Development.

[27]  R. Vale,et al.  Augmin promotes meiotic spindle formation and bipolarity in Xenopus egg extracts , 2011, Proceedings of the National Academy of Sciences.

[28]  Nanda Keijzer,et al.  Probing intracellular motor protein activity using an inducible cargo trafficking assay. , 2010, Biophysical journal.

[29]  Gary D. Bader,et al.  GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop , 2010, Bioinform..

[30]  Frank Bradke,et al.  Axon Extension Occurs Independently of Centrosomal Microtubule Nucleation , 2010, Science.

[31]  F. Polleux,et al.  Establishment of axon-dendrite polarity in developing neurons. , 2009, Annual review of neuroscience.

[32]  A. Hyman,et al.  HAUS, the 8-Subunit Human Augmin Complex, Regulates Centrosome and Spindle Integrity , 2009, Current Biology.

[33]  Cecilia Conde,et al.  Microtubule assembly, organization and dynamics in axons and dendrites , 2009, Nature Reviews Neuroscience.

[34]  G. Goshima,et al.  The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells , 2009, Proceedings of the National Academy of Sciences.

[35]  C. Hoogenraad,et al.  Dynamic Microtubules Regulate Dendritic Spine Morphology and Synaptic Plasticity , 2009, Neuron.

[36]  G. Goshima,et al.  Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle , 2008, The Journal of cell biology.

[37]  F. Bradke,et al.  Microtubule stabilization specifies initial neuronal polarization , 2008, The Journal of cell biology.

[38]  R. Wollman,et al.  Genes Required for Mitotic Spindle Assembly in Drosophila S2 Cells , 2007, Science.

[39]  Dante S. Bortone,et al.  Phosphorylation of Neurogenin2 Specifies the Migration Properties and the Dendritic Morphology of Pyramidal Neurons in the Neocortex , 2005, Neuron.

[40]  L. Qiang,et al.  Microtubules cut and run. , 2005, Trends in cell biology.

[41]  Aaron D. Milstein,et al.  GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking , 2005, Nature Neuroscience.

[42]  M. Bartos,et al.  Hippocampal Slice Cultures , 2005 .

[43]  Hiroaki Kitano,et al.  The PANTHER database of protein families, subfamilies, functions and pathways , 2004, Nucleic Acids Res..

[44]  W. Denk,et al.  Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Fran Lewitter,et al.  siRNA Selection Server: an automated siRNA oligonucleotide prediction server , 2004, Nucleic Acids Res..

[46]  E Meijering,et al.  Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images , 2004, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[47]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[48]  Niels Galjart,et al.  Visualization of Microtubule Growth in Cultured Neurons via the Use of EB3-GFP (End-Binding Protein 3-Green Fluorescent Protein) , 2003, The Journal of Neuroscience.

[49]  R. Bernards,et al.  A System for Stable Expression of Short Interfering RNAs in Mammalian Cells , 2002, Science.

[50]  G. Banker,et al.  Experimental observations on the development of polarity by hippocampal neurons in culture , 1989, The Journal of cell biology.

[51]  L. Kapitein,et al.  Purification and Application of a Small Actin Probe for Single-Molecule Localization Microscopy. , 2018, Methods in molecular biology.

[52]  C. Hoogenraad,et al.  Studying neuronal microtubule organization and microtubule-associated proteins using single molecule localization microscopy. , 2016, Methods in cell biology.

[53]  C. Hoogenraad,et al.  Live imaging of microtubule dynamics in organotypic hippocampal slice cultures. , 2016, Methods in cell biology.

[54]  C. Hoogenraad,et al.  Microtubule dynamics in dendritic spines. , 2010, Methods in cell biology.