DNA-based asymmetric catalysis.

The unique chiral structure of DNA has been a source of inspiration for the development of a new class of bio-inspired catalysts. The novel concept of DNA-based asymmetric catalysis, which was introduced only five years ago, has been applied successfully in a variety of catalytic enantioselective reactions. In this tutorial review, the ideas behind this novel concept will be introduced, an overview of the catalytic chemistry available to date will be given and the role of DNA in catalysis will be discussed. Finally, an overview of new developments of potential interest for DNA-based asymmetric catalysis will be provided.

[1]  T. Ward,et al.  Artificial metalloenzymes for asymmetric allylic alkylation on the basis of the biotin-avidin technology. , 2008, Angewandte Chemie.

[2]  Colin D. Medley,et al.  Molecular engineering of DNA: molecular beacons. , 2009, Angewandte Chemie.

[3]  O. Seitz,et al.  Achieving Turnover in DNA‐Templated Reactions , 2008, Chembiochem : a European journal of chemical biology.

[4]  T. Sheppard,et al.  Site-specific oxidative cleavage of DNA by metallosalen-DNA conjugates. , 2004, Chemical communications.

[5]  T. Sheppard,et al.  Nucleic acid template-directed assembly of metallosalen-DNA conjugates. , 2001, Journal of the American Chemical Society.

[6]  D. Burgess,et al.  DNA-based therapeutics and DNA delivery systems: A comprehensive review , 2005, The AAPS Journal.

[7]  G. Pratviel,et al.  Activation of DNA carbon-hydrogen bonds by metal complexes. , 2010, Chemical reviews.

[8]  M. Sodeoka,et al.  Catalytic Enantioselective Michael Reaction of 1,3‐Dicarbonyl Compounds via Formation of Chiral Palladium Enolate , 2005 .

[9]  A. Jäschke,et al.  DNA-based phosphane ligands. , 2007, Chemistry.

[10]  G. Roelfes,et al.  Highly enantioselective DNA-based catalysis. , 2006, Chemical communications.

[11]  T. Ward,et al.  Artificial metalloenzymes as selective catalysts in aqueous media , 2008 .

[12]  David R. Liu,et al.  DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules. , 2004, Angewandte Chemie.

[13]  T. Tarasow,et al.  RNA-catalysed carbon–carbon bond formation , 1997, Nature.

[14]  T. Ward,et al.  Chemogenetic protein engineering: an efficient tool for the optimization of artificial metalloenzymes. , 2008, Chemical communications.

[15]  Andres Jäschke,et al.  Enantioselective Ribozyme Catalysis of a Bimolecular Cycloaddition Reaction , 2000 .

[16]  P. Schultz,et al.  An antibody-catalyzed bimolecular Diels-Alder reaction , 1990 .

[17]  Takafumi Ueno,et al.  Preparation of artificial metalloenzymes by insertion of chromium(III) Schiff base complexes into apomyoglobin mutants. , 2003, Angewandte Chemie.

[18]  G. Roelfes,et al.  Catalytic enantioselective syn hydration of enones in water using a DNA-based catalyst. , 2010, Nature chemistry.

[19]  B. Ge,et al.  Allosterically activated Diels-Alder catalysis by a ribozyme. , 2005, Journal of the American Chemical Society.

[20]  Ronald Breslow,et al.  Hydrophobic acceleration of Diels-Alder reactions , 1980 .

[21]  Paul Anastas,et al.  Green chemistry: principles and practice. , 2010, Chemical Society reviews.

[22]  S. Vogel,et al.  Toward a Catalytic Site in DNA: Polyaza Crown Ether as Non-Nucleosidic Building Blocks in DNA Conjugates , 2007, Nucleosides, nucleotides & nucleic acids.

[23]  Soyoung Park,et al.  DNA-based hybrid catalysts for asymmetric organic synthesis. , 2010, Angewandte Chemie.

[24]  G. Roelfes,et al.  Organic co-solvents in aqueous DNA-based asymmetric catalysis. , 2010, Organic & biomolecular chemistry.

[25]  G. Roelfes,et al.  DNA-based asymmetric catalysis: sequence-dependent rate acceleration and enantioselectivity. , 2008, Journal of the American Chemical Society.

[26]  G. Roelfes,et al.  Alpha,beta-unsaturated 2-acyl imidazoles as a practical class of dienophiles for the DNA-based catalytic asymmetric Diels-Alder reaction in water. , 2007, Organic letters.

[27]  M. Reetz,et al.  Copper-phthalocyanine conjugates of serum albumins as enantioselective catalysts in Diels-Alder reactions. , 2006, Angewandte Chemie.

[28]  S. Otto,et al.  Lewis acid catalysis of a Diels-Alder reaction in water , 1996 .

[29]  A. Mahammed,et al.  Albumin-conjugated corrole metal complexes: extremely simple yet very efficient biomimetic oxidation systems. , 2005, Journal of the American Chemical Society.

[30]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[31]  G. Roelfes,et al.  Modular assembly of novel DNA-based catalysts. , 2008, Chemical communications.

[32]  S. Silverman,et al.  Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects. , 2008, Chemical communications.

[33]  G. Roelfes,et al.  Enantioselective Friedel-Crafts reactions in water using a DNA-based catalyst. , 2009, Angewandte Chemie.

[34]  N. Shibata,et al.  DNA-Mediated Enantioselective Carbon-Fluorine Bond Formation , 2007 .

[35]  Tom Garner,et al.  Tuneable DNA-based asymmetric catalysis using a G-quadruplex supramolecular assembly. , 2010, Chemical communications.

[36]  G. A. van der Marel,et al.  Phosphine containing oligonucleotides for the development of metallodeoxyribozymes. , 2007, Chemical communications.

[37]  A. Marx,et al.  Proline-modified DNA as catalyst of the aldol reaction. , 2007, Angewandte Chemie.

[38]  T. Ward,et al.  Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Manfred T Reetz,et al.  Directed evolution of enantioselective enzymes: an unconventional approach to asymmetric catalysis in organic chemistry. , 2009, The Journal of organic chemistry.

[40]  Gerard Roelfes,et al.  DNA-based asymmetric catalysis. , 2005, Angewandte Chemie.

[41]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[42]  Davidr . Evans,et al.  Enantioselective Friedel-Crafts alkylations of alpha,beta-unsaturated 2-acyl imidazoles catalyzed by bis(oxazolinyl)pyridine-scandium(III) triflate complexes. , 2005, Journal of the American Chemical Society.

[43]  A. Jäschke,et al.  Allylic amination by a DNA-diene-iridium(I) hybrid catalyst. , 2009, Angewandte Chemie.

[44]  Yi Lu,et al.  Design of functional metalloproteins , 2009, Nature.

[45]  G. Roelfes,et al.  A Ligand Structure–Activity Study of DNA‐Based Catalytic Asymmetric Hydration and Diels–Alder Reactions. , 2011 .

[46]  G. Roelfes,et al.  DNA-based hydrolytic kinetic resolution of epoxides , 2008 .

[47]  George M. Whitesides,et al.  Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety , 1978 .

[48]  G. Roelfes,et al.  A kinetic and structural investigation of DNA-based asymmetric catalysis using first-generation ligands. , 2009, Chemistry.

[49]  G. Roelfes,et al.  Enantioselective artificial metalloenzymes based on a bovine pancreatic polypeptide scaffold. , 2009, Angewandte Chemie.

[50]  Jan B. F. N. Engberts,et al.  A chiral Lewis-acid-catalyzed Diels-Alder reaction. Water- enhanced enantioselectivity , 1998 .

[51]  G. Roelfes DNA and RNA induced enantioselectivity in chemical synthesis. , 2007, Molecular bioSystems.

[52]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[53]  A. Klibanov,et al.  Specificity of a DNA-based (DNAzyme) peroxidative biocatalyst , 2007, Biotechnology Letters.

[54]  S. Silverman,et al.  DNA and RNA can be equally efficient catalysts for carbon-carbon bond formation. , 2008, Journal of the American Chemical Society.

[55]  D. Hilvert,et al.  Antibody catalysis of the Diels-Alder reaction , 1989 .

[56]  G. Roelfes,et al.  DNA-based catalytic enantioselective michael reactions in water. , 2007, Angewandte Chemie.