Feedback Vertex Sets in Tournaments

We study combinatorial and algorithmic questions around minimal feedback vertex sets (FVS) in tournament graphs. On the combinatorial side, we derive upper and lower bounds on the maximum number of minimal FVSs in an n-vertex tournament. We prove that every tournament on n vertices has at most 1.6740n minimal FVSs, and that there is an infinite family of tournaments, all having at least 1.5448n minimal FVSs. This improves and extends the bounds of Moon (1971). On the algorithmic side, we design the first polynomial space algorithm that enumerates the minimal FVSs of a tournament with polynomial delay. The combination of our results yields the fastest known algorithm for finding a minimum-sized FVS in a tournament. © 2013 Wiley Periodicals, Inc. (Part of this research has been supported by the Netherlands Organisation for Scientific Research (NWO), grant 639.033.403. A preliminary version of this article appeared in the Proceedings of ESA 2010.)

[1]  J. Moon On Subtournaments of a Tournament , 1966, Canadian Mathematical Bulletin.

[2]  Fedor V. Fomin,et al.  Iterative compression and exact algorithms , 2010, Theor. Comput. Sci..

[3]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[4]  Benno Schwikowski,et al.  On enumerating all minimal solutions of feedback problems , 2002, Discret. Appl. Math..

[5]  Saket Saurabh,et al.  Efficient Exact Algorithms through Enumerating Maximal Independent Sets and Other Techniques , 2007, Theory of Computing Systems.

[6]  O. Hudry On the difficulty of computing the winners of a tournament , 2006 .

[7]  J. Moon On maximal transitive subtournaments , 1971, Proceedings of the Edinburgh Mathematical Society.

[8]  Shuji Tsukiyama,et al.  A New Algorithm for Generating All the Maximal Independent Sets , 1977, SIAM J. Comput..

[9]  Matthias Mnich,et al.  Feedback Vertex Sets in Tournaments , 2010, ESA.

[10]  J. Banks Sophisticated voting outcomes and agenda control , 1984 .

[11]  Victor Neumann-Lara A Short Proof of a Theorem of Reid and Parker on Tournaments , 1994, Graphs Comb..

[12]  Eric Torng,et al.  SRPT optimally utilizes faster machines to minimize flow time , 2004, SODA '04.

[13]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[14]  Gerhard J. Woeginger,et al.  Open problems around exact algorithms , 2008, Discret. Appl. Math..

[15]  H. Landau On dominance relations and the structure of animal societies: III The condition for a score structure , 1953 .

[16]  L. Moser,et al.  The Theory of Round Robin Tournaments , 1966 .

[17]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[18]  Barry K. Rosen,et al.  Robust Linear Algorithms for Cutsets , 1982, J. Algorithms.

[19]  Irène Charon,et al.  A survey on the linear ordering problem for weighted or unweighted tournaments , 2007, 4OR.

[20]  Bolette Ammitzbøll Jurik,et al.  On the number of maximal bipartite subgraphs of a graph , 2005, J. Graph Theory.

[21]  Dieter Kratsch,et al.  On Independent Sets and Bicliques in Graphs , 2008, Algorithmica.

[22]  David Eppstein Small Maximal Independent Sets and Faster Exact Graph Coloring , 2001, WADS.

[23]  Fabrizio Grandoni,et al.  Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications , 2008, TALG.

[24]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[25]  Gerhard J. Woeginger,et al.  Space and Time Complexity of Exact Algorithms : Some Open Problems , 2004 .

[26]  J. Moon,et al.  On cliques in graphs , 1965 .

[27]  Fedor V. Fomin,et al.  Treewidth computation and extremal combinatorics , 2008, Comb..

[28]  K. B. Reid,et al.  Disproof of a conjecture of Erdös and moser on tournaments , 1970 .

[29]  Irith Pomeranz,et al.  An optimal algorithm for cycle breaking in directed graphs , 1995, J. Electron. Test..

[30]  Saket Saurabh,et al.  Fast Exponential Algorithms for Maximum r-Regular Induced Subgraph Problems , 2006, FSTTCS.

[31]  Rolf Niedermeier,et al.  Fixed-parameter tractability results for feedback set problems in tournaments , 2006, J. Discrete Algorithms.

[32]  Fedor V. Fomin,et al.  Finding Induced Subgraphs via Minimal Triangulations , 2009, STACS.

[33]  Jesper Makholm Byskov Enumerating maximal independent sets with applications to graph colouring , 2004, Oper. Res. Lett..

[34]  Andreas Björklund,et al.  Set Partitioning via Inclusion-Exclusion , 2009, SIAM J. Comput..

[35]  Felix Brandt,et al.  Minimal stable sets in tournaments , 2008, J. Econ. Theory.

[36]  Eugene L. Lawler,et al.  A Note on the Complexity of the Chromatic Number Problem , 1976, Inf. Process. Lett..

[37]  Robert W. Floyd,et al.  Assigning Meanings to Programs , 1993 .

[38]  Fedor V. Fomin,et al.  On the Minimum Feedback Vertex Set Problem: Exact and Enumeration Algorithms , 2008, Algorithmica.