On the structure of special classes of uninorms

In this paper, the concept of the Reidemeister closure condition is adopted in order to characterize associativity of uninorms with a special attention paid to the class of representable uninorms. Thus, conditions replacing the associativity requirement for such uninorms are given. Further, the attention is focused on the uninorms where the underlying t-norm and t-conorm are idempotent or induce an involutive negator. Based on the aforementioned results, the structure of these classes of uninorms is fully described.

[1]  Bernard De Baets,et al.  A single-point characterization of representable uninorms , 2012, Fuzzy Sets Syst..

[2]  Shi-kai Hu,et al.  The structure of continuous uni-norms , 2001, Fuzzy Sets Syst..

[3]  Bernard De Baets,et al.  A contour view on uninorm properties , 2006, Kybernetika.

[4]  Bernard De Baets,et al.  On the structure of left-continuous t-norms that have a continuous contour line , 2007, Fuzzy Sets Syst..

[5]  Pawel Drygas On the structure of continuous uninorms , 2007, Kybernetika.

[6]  S. Jenei On the Geometry of Associativity , 2007 .

[7]  Joan Torrens,et al.  On locally internal monotonic operations , 2003, Fuzzy Sets Syst..

[8]  Bernard De Baets,et al.  Idempotent uninorms , 1999, Eur. J. Oper. Res..

[9]  Dov M. Gabbay,et al.  Fuzzy logics based on [0,1)-continuous uninorms , 2007, Arch. Math. Log..

[10]  Sándor Jenei,et al.  Structural Description of a Class of Involutive Uninorms via Skew Symmetrization , 2011, J. Log. Comput..

[11]  K. Reidemeister,et al.  Topologische Fragen der Differentialgeometrie. V. Gewebe und Gruppen , 1929 .

[12]  G. Bol,et al.  Topologische Fragen der Differentialgeometrie 29. Ebenenbüschelgewebe , 1931 .

[13]  Ronald R. Yager,et al.  Structure of Uninorms , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[14]  Milan Petrík,et al.  Associativity of triangular norms characterized by the geometry of their level sets , 2012, Fuzzy Sets Syst..

[15]  Milan Petrík,et al.  Convex combinations of nilpotent triangular norms , 2009 .

[16]  Radko Mesiar,et al.  On the Relationship of Associative Compensatory operators to triangular Norms and Conorms , 1996, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[17]  J. Aczel,et al.  Quasigroups, nets, and nomograms , 1965 .

[18]  Wilhelm Blaschke,et al.  Geometrie der Gewebe : topologische Fragen der Differentialgeometrie , 1938 .

[19]  Sándor Jenei On the structure of rotation-invariant semigroups , 2003, Arch. Math. Log..

[20]  Jules Dubourdieu,et al.  Topologische fragen der differentialgeometrie , 1928 .

[21]  Ronald R. Yager,et al.  Uninorm aggregation operators , 1996, Fuzzy Sets Syst..

[22]  Bernard De Baets,et al.  Rotation-invariant t-norms: The rotation invariance property revisited , 2009, Fuzzy Sets Syst..