NETMORPH: A Framework for the Stochastic Generation of Large Scale Neuronal Networks With Realistic Neuron Morphologies

We present a simulation framework, called NETMORPH, for the developmental generation of 3D large-scale neuronal networks with realistic neuron morphologies. In NETMORPH, neuronal morphogenesis is simulated from the perspective of the individual growth cone. For each growth cone in a growing axonal or dendritic tree, its actions of elongation, branching and turning are described in a stochastic, phenomenological manner. In this way, neurons with realistic axonal and dendritic morphologies, including neurite curvature, can be generated. Synapses are formed as neurons grow out and axonal and dendritic branches come in close proximity of each other. NETMORPH is a flexible tool that can be applied to a wide variety of research questions regarding morphology and connectivity. Research applications include studying the complex relationship between neuronal morphology and global patterns of synaptic connectivity. Possible future developments of NETMORPH are discussed.

[1]  Harry B. M. Uylings,et al.  Modeling the natural variability in the shape of dendritic trees: Application to basal dendrites of small rat cortical layer 5 pyramidal neurons , 1999, Neurocomputing.

[2]  Geoffrey J. Goodhill,et al.  Mathematical guidance for axons , 1998, Trends in Neurosciences.

[3]  H. Uylings,et al.  Environmental influences on the neocortex in later life. , 1978, Progress in brain research.

[4]  R Kötter,et al.  Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer va in the primary somatosensory cortex. , 2006, Cerebral cortex.

[5]  H. Markram,et al.  Morphological, Electrophysiological, and Synaptic Properties of Corticocallosal Pyramidal Cells in the Neonatal Rat Neocortex , 2006 .

[6]  Bruce P. Graham,et al.  Competition for tubulin between growing neurites during development , 2001, Neurocomputing.

[7]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[8]  Arjen van Ooyen,et al.  Transport limited effects in a model of dendritic branching. , 2004, Journal of theoretical biology.

[9]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[10]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[11]  Nicoletta Berardi,et al.  Phenotypic Knockout of Nerve Growth Factor in Adult Transgenic Mice Reveals Severe Deficits in Basal Forebrain Cholinergic Neurons, Cell Death in the Spleen, and Skeletal Muscle Dystrophy , 2000, The Journal of Neuroscience.

[12]  D. Chklovskii,et al.  Neurogeometry and potential synaptic connectivity , 2005, Trends in Neurosciences.

[13]  Khashayar Pakdaman,et al.  Network connectivity changes through activity-dependent neurite outgrowth , 1996, Neural Processing Letters.

[14]  Jaap van Pelt and Harry B.M. Uylings Natural Variability in the Geometry of Dendritic Branching Patterns , 2005 .

[15]  Eshel Ben-Jacob,et al.  Generic modeling of chemotactic based self-wiring of neural networks , 1998, Neural Networks.

[16]  N. L. Hayes,et al.  Competitive interactions during dendritic growth: a simple stochastic growth algorithm , 1992, Brain Research.

[17]  R C Williams,et al.  Microtubule-associated protein 2 alters the dynamic properties of microtubule assembly and disassembly. , 1993, The Journal of biological chemistry.

[18]  A. Peters Thalamic input to the cerebral cortex , 1979, Trends in Neurosciences.

[19]  Markus Butz,et al.  A theoretical network model to analyse neurogenesis and synaptogenesis in the dentate gyrus , 2006, Neural Networks.

[20]  Troy Shinbrot,et al.  Growth Cone Pathfinding: a competition between deterministic and stochastic events , 2004, BMC Neuroscience.

[21]  Lily Yeh Jan,et al.  The Control of Dendrite Development , 2003, Neuron.

[22]  H. Hentschel,et al.  Models of axon guidance and bundling during development , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[23]  A. V. Ooyen,et al.  Activity-dependent outgrowth of neurons and overshoot phenomena in developing neural networks , 1994 .

[24]  J J Jack,et al.  Dendritic morphology of pyramidal neurones of the visual cortex of the rat. IV: Electrical geometry , 1992, The Journal of comparative neurology.

[25]  Gerd B. Müller,et al.  Modeling biology : structures, behaviors, evolution , 2007 .

[26]  S. B. Kater,et al.  Neuronal growth cone as an integrator of complex environmental information. , 1990, Cold Spring Harbor symposia on quantitative biology.

[27]  G. Shepherd,et al.  Laminar and Columnar Organization of Ascending Excitatory Projections to Layer 2/3 Pyramidal Neurons in Rat Barrel Cortex , 2005, The Journal of Neuroscience.

[28]  Olaf Sporns,et al.  Modeling in the neurosciences : from biological systems to neuromimetic robotics , 2005 .

[29]  J. Ávila,et al.  Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function , 2000, Progress in Neurobiology.

[30]  Bernhard Hellwig,et al.  A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex , 2000, Biological Cybernetics.

[31]  G. J. Smit,et al.  Three-dimensional branching structure of pyramidal cell dendrites , 1975, Brain Research.

[32]  G A Ascoli,et al.  Generation, description and storage of dendritic morphology data. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[33]  Arjen van Ooyen,et al.  Modeling Dendritic Geometry and the Development of Nerve Connections , 2000 .

[34]  Artur Luczak Spatial embedding of neuronal trees modeled by diffusive growth , 2006, Journal of Neuroscience Methods.

[35]  Jeffrey L. Krichmar,et al.  L-neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology , 2000, Neurocomputing.

[36]  I. Mcquarrie,et al.  The Nerve Growth Cone , 1992, Neurology.

[37]  Daniel J. Goldberg,et al.  Looking into growth cones , 1989, Trends in Neurosciences.

[38]  G. Ramakers,et al.  Depolarization stimulates lamellipodia formation and axonal but not dendritic branching in cultured rat cerebral cortex neurons. , 1998, Brain research. Developmental brain research.

[39]  H P Clamann,et al.  Comparison of the topology and growth rules of motoneuronal dendrites , 1995, The Journal of comparative neurology.

[40]  A. Larkman,et al.  Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions , 1991, The Journal of comparative neurology.

[41]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[42]  Michael L. Hines,et al.  The Neuron Simulation Program , 1994 .

[43]  Alexander E. Dityatev,et al.  Natural variability in the number of dendritic segments: Model‐based inferences about branching during neurite outgrowth , 1997, The Journal of comparative neurology.

[44]  Jaap van Pelt,et al.  Measures for quantifying dendritic arborizations , 2002, Network.

[45]  R. Fields,et al.  Neural cell adhesion molecules in activity-dependent development and synaptic plasticity , 1996, Trends in Neurosciences.

[46]  D. Chklovskii,et al.  Class-Specific Features of Neuronal Wiring , 2004, Neuron.

[47]  T. O'Connor,et al.  Filopodial Adhesion Does Not Predict Growth Cone Steering Events In Vivo , 1999, The Journal of Neuroscience.

[48]  Marcus Kaiser,et al.  Development of multi-cluster cortical networks by time windows for spatial growth , 2007, Neurocomputing.

[49]  J P,et al.  Complex Periodic Behaviour in a Neural Network Model with Activity-Dependent Neurite Outgrowth , 1996 .

[50]  Arjen Van Ooyen,et al.  Modeling neural development , 2003 .

[51]  R Grantyn,et al.  Quantitative morphological analysis of deep superior colliculus neurons stained intracellularly with HRP in the cat. , 1986, Journal fur Hirnforschung.

[52]  M. Corner,et al.  Implications of activity dependent neurite outgrowth for neuronal morphology and network development. , 1995, Journal of theoretical biology.

[53]  J G Parnavelas,et al.  Geometrical and topological characteristics in the dendritic development of cortical pyramidal and non-pyramidal neurons. , 1994, Progress in brain research.

[54]  Matthew K Belmonte,et al.  Fragile X syndrome and autism at the intersection of genetic and neural networks , 2006, Nature Neuroscience.

[55]  James R Bamburg Introduction to Cytoskeletal Dynamics and Pathfinding of Neuronal Growth Cones1 , 2003, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[56]  A. V. Ooyen,et al.  Complex periodic behaviour in a neural network model with activity-dependent neurite outgrowth. , 1996 .

[57]  H. Berg Cold Spring Harbor Symposia on Quantitative Biology.: Vol. LII. Evolution of Catalytic Functions. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1987, ISBN 0-87969-054-2, xix + 955 pp., US $150.00. , 1989 .

[58]  Anirvan Ghosh,et al.  Calcium Signaling and the Control of Dendritic Development , 2005, Neuron.

[59]  Gabriel Wittum,et al.  NeuGen: A tool for the generation of realistic morphology of cortical neurons and neural networks in 3D , 2006, Neurocomputing.

[60]  Jaap van Pelt,et al.  A shape analysis framework for neuromorphometry , 2002, Network.

[61]  A. V. Ooyen,et al.  A computational model of dendrite elongation and branching based on MAP2 phosphorylation. , 2001, Journal of theoretical biology.

[62]  Jinko Graham,et al.  Formation of dendritic branching patterns , 2003 .

[63]  Laurent Tettoni,et al.  Biophysical model of axonal pathfinding , 2001, Neurocomputing.

[64]  S. Landis,et al.  Neuronal growth cones. , 1983, Annual review of physiology.

[65]  Jaap van Pelt,et al.  Branching rates and growth functions in the outgrowth of dendritic branching patterns , 2002, Network.

[66]  Jaap van Pelt,et al.  Growth Functions in Dendritic Outgrowth , 2003 .

[67]  F. Schmitt,et al.  Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment , 2007, Neurology.

[68]  R. Angus Silver,et al.  neuroConstruct: A Tool for Modeling Networks of Neurons in 3D Space , 2007, Neuron.

[69]  J. van Pelt,et al.  Tree asymmetry--a sensitive and practical measure for binary topological trees. , 1992, Bulletin of mathematical biology.

[70]  Douglas Rodney CX3D: a java package for simulation of cortical development in 3D , 2008 .

[71]  Arjen van Ooyen,et al.  The need for integrating neuronal morphology databases and computational environments in exploring neuronal structure and function , 2001, Anatomy and Embryology.

[72]  R OLEA,et al.  [MATURATION OF THE NERVOUS SYSTEM]. , 1964, Revista de la Sociedad Colombiana de Pediatria y Puericultura.

[73]  Bruce Graham,et al.  Biologically plausible models of neurite outgrowth. , 2005, Progress in brain research.

[74]  Paul C. Letourneau Intrinsic determinants of neuronal form and function edited by R. J. Lasek and M. M. Black, Alan R. Liss, 1988. US$120.00 (xvii + 591 pages) ISBN 0 8451 2739 X , 1989, Trends in Neurosciences.

[75]  H. Markram,et al.  Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. , 2002, Cerebral cortex.

[76]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[77]  Jaap van Pelt,et al.  Emerging synaptic connectivity in simulated networks of outgrowing neurons with realistic morphologies using NETMORPH , 1970 .

[78]  A. Larkman Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns , 1991, The Journal of comparative neurology.

[79]  Andreas Schierwagen,et al.  Modeling dendritic morphological complexity of deep layer cat superior colliculus neurons , 2001, Neurocomputing.

[80]  Arjen van Ooyen,et al.  Modeling Dendritic Geometry and the Development of Nerve Connections , 2000 .

[81]  Giorgio A. Ascoli,et al.  Reconstruction of Brain Networks by Algorithmic Amplification of Morphometry Data , 1999, IWANN.

[82]  J van Pelt,et al.  Terminal and intermediate segment lengths in neuronal trees with finite length. , 1993, Bulletin of mathematical biology.

[83]  K W Tosney,et al.  Identification of an Invariant Response: Stable Contact with Schwann Cells Induces Veil Extension in Sensory Growth Cones , 2000, The Journal of Neuroscience.

[84]  Jeffrey L. Krichmar,et al.  Computer generation and quantitative morphometric analysis of virtual neurons , 2001, Anatomy and Embryology.

[85]  R. Buxbaum,et al.  Axonal outgrowth of cultured neurons is not limited by growth cone competition. , 1998, Journal of cell science.