Fragment molecular orbital-based molecular dynamics (FMO-MD) method with MP2 gradient

Abstract The energy gradient of the second-order Moller–Plesset perturbation theory (MP2) has been implemented in conjunction with the fragment molecular orbital-based molecular dynamics (FMO-MD) method including up to three-body correction (FMO3). A hybrid integral-direct approach of both atomic and molecular orbital indices was utilized with parallelism for the gradient calculations. A droplet model consisting of 64 water molecules was then simulated with the 6-31G ∗ basis set. The first peak position of O–O radial distribution function was evaluated to be 2.75 A at the FMO3-MP2 level, whereas the corresponding Hartree–Fock (FMO3-HF) value was 2.89 A. Comparison with an X-ray value of 2.73 A indicated better reliability of the MP2 gradient for FMO-MD.

[1]  Æleen Frisch,et al.  Exploring chemistry with electronic structure methods , 1996 .

[2]  Greg L. Hura,et al.  What can x-ray scattering tell us about the radial distribution functions of water? , 2000 .

[3]  Jiali Gao,et al.  Toward a Molecular Orbital Derived Empirical Potential for Liquid Simulations , 1997 .

[4]  Makoto Taiji,et al.  Fast and accurate molecular dynamics simulation of a protein using a special‐purpose computer , 1997 .

[5]  Kazuya Ishimura,et al.  Accuracy of the three‐body fragment molecular orbital method applied to Møller–Plesset perturbation theory , 2007, J. Comput. Chem..

[6]  Yuto Komeiji,et al.  Fragment molecular orbital-based molecular dynamics (FMO-MD), a quantum simulation tool for large molecular systems , 2009 .

[7]  Donald G Truhlar,et al.  Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters. , 2007, Journal of chemical theory and computation.

[8]  Kaori Fukuzawa,et al.  Large scale FMO-MP2 calculations on a massively parallel-vector computer , 2008 .

[9]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[10]  Rodney J. Bartlett,et al.  Theory and application of MBPT(3) gradients: The density approach , 1987 .

[11]  Michael J. Frisch,et al.  A direct MP2 gradient method , 1990 .

[12]  Umpei Nagashima,et al.  A parallelized integral-direct second-order Møller–Plesset perturbation theory method with a fragment molecular orbital scheme , 2004 .

[13]  Yuichi Inadomi,et al.  Fragment molecular orbital method: application to molecular dynamics simulation, ‘ab initio FMO-MD’ , 2003 .

[14]  John Z. H. Zhang,et al.  Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy , 2003 .

[15]  Kazuya Ishimura,et al.  New parallel algorithm for MP2 energy gradient calculations , 2007, J. Comput. Chem..

[16]  Yang,et al.  Direct calculation of electron density in density-functional theory. , 1991, Physical review letters.

[17]  Kazuo Kitaura,et al.  Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. , 2007, The journal of physical chemistry. A.

[18]  Yuji Mochizuki,et al.  Large scale MP2 calculations with fragment molecular orbital scheme , 2004 .

[19]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[20]  Graham D. Fletcher,et al.  A parallel second-order Møller-Plesset gradient , 1997 .

[21]  Kaori Fukuzawa,et al.  Fragment molecular orbital method: use of approximate electrostatic potential , 2002 .

[22]  Yuichi Inadomi,et al.  PEACH 4 with ABINIT-MP: a general platform for classical and quantum simulations of biological molecules. , 2004, Computational biology and chemistry.

[23]  A. Seitsonen,et al.  Importance of van der Waals interactions in liquid water. , 2009, Journal of Physical Chemistry B.

[24]  Takeshi Ishikawa,et al.  Fragment Molecular Orbital method‐based Molecular Dynamics (FMO‐MD) as a simulator for chemical reactions in explicit solvation , 2009, J. Comput. Chem..

[25]  Mark S. Gordon,et al.  Accurate methods for large molecular systems. , 2009, The journal of physical chemistry. B.

[26]  T. Nakano,et al.  Fragment molecular orbital-based molecular dynamics (FMO-MD) simulations on hydrated Zn(II) ion , 2010 .

[27]  D. Xenides,et al.  Structure and ultrafast dynamics of liquid water: a quantum mechanics/molecular mechanics molecular dynamics simulations study. , 2005, The Journal of chemical physics.

[28]  Kazuo Kitaura,et al.  The importance of three-body terms in the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[29]  Kazuo Kitaura,et al.  The Fragment Molecular Orbital Method: Practical Applications to Large Molecular Systems , 2009 .

[30]  Ida M. B. Nielsen,et al.  A new direct MP2 gradient algorithm with implementation on a massively parallel computer , 1996 .

[31]  Yuto Komeiji,et al.  Fragment molecular orbital method: analytical energy gradients , 2001 .

[32]  Mark S. Gordon,et al.  A derivation of the frozen-orbital unrestricted open-shell and restricted closed-shell second-order perturbation theory analytic gradient expressions , 2003 .

[33]  Masato Kobayashi,et al.  Implementation of divide‐and‐conquer method including Hartree‐Fock exchange interaction , 2007, J. Comput. Chem..

[34]  Yuto Komeiji,et al.  Three-body expansion and generalized dynamic fragmentation improve the fragment molecular orbital-based molecular dynamics (FMO-MD)☆ , 2010 .

[35]  Kazuo Kitaura,et al.  Derivatives of the approximated electrostatic potentials in the fragment molecular orbital method , 2009 .

[36]  Shridhar R. Gadre,et al.  Ab initio quality one‐electron properties of large molecules: Development and testing of molecular tailoring approach , 2003, J. Comput. Chem..

[37]  Takeshi Ishikawa,et al.  A fully quantum mechanical simulation study on the lowest n-π* state of hydrated formaldehyde , 2007 .

[38]  Kazuo Kitaura,et al.  Importance of the hybrid orbital operator derivative term for the energy gradient in the fragment molecular orbital method , 2010 .

[39]  Marat Valiev,et al.  Fast electron correlation methods for molecular clusters in the ground and excited states , 2005 .

[40]  Kazuo Kitaura,et al.  The three-body fragment molecular orbital method for accurate calculations of large systems , 2006 .

[41]  M. Gordon,et al.  The effective fragment potential: small clusters and radial distribution functions. , 2004, The Journal of chemical physics.

[42]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[43]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .

[44]  Fumio Hirata,et al.  RISM-SCF study of the free-energy profile of the Menshutkin-type reaction NH3+CH3Cl→NH3CH3++Cl− in aqueous solution , 1999 .

[45]  Kaori Fukuzawa,et al.  Accuracy of fragmentation in ab initio calculations of hydrated sodium cation , 2009 .

[46]  Kazuo Kitaura,et al.  Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[47]  Takeshi Ishikawa,et al.  How does an S(N)2 reaction take place in solution? Full ab initio MD simulations for the hydrolysis of the methyl diazonium ion. , 2008, Journal of the American Chemical Society.