Creating invariance to "nuisance parameters" in face recognition

A major goal for face recognition is to identify faces where the pose of the probe is different from the stored face. Typical feature vectors vary more with pose than with identity, leading to very poor recognition performance. We propose a non-linear many-to-one mapping from a conventional feature space to a new space constructed so that each individual has a unique feature vector regardless of pose. Training data is used to implicitly parameterize the position of the multi-dimensional face manifold by pose. We introduce a co-ordinate transform, which depends on the position on the manifold. This transform is chosen so that different poses of the same face are mapped to the same feature vector. The same approach is applied to illumination changes. We investigate different methods for creating features, which are invariant to both pose and illumination. We provide a metric to assess the discriminability of the resulting features. Our technique increases the discriminability of faces under unknown pose and lighting compared to contemporary methods.

[1]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Alex Pentland,et al.  View-based and modular eigenspaces for face recognition , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Sami Romdhani,et al.  Face Identification by Fitting a 3D Morphable Model Using Linear Shape and Texture Error Functions , 2002, ECCV.

[4]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[5]  Ralph Gross,et al.  Appearance-based face recognition and light-fields , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Ming-Hsuan Yang,et al.  Kernel Eigenfaces vs. Kernel Fisherfaces: Face recognition using kernel methods , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[7]  Sami Romdhani,et al.  Face identification across different poses and illuminations with a 3D morphable model , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  Rama Chellappa,et al.  SFS based view synthesis for robust face recognition , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).