High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap

We report on III-nitride photovoltaic cells with external quantum efficiency as high as 63%. InxGa1−xN/GaN p-i-n double heterojunction solar cells are grown by metal-organic chemical vapor deposition on (0001) sapphire substrates with xIn=12%. A reciprocal space map of the epitaxial structure showed that the InGaN was coherently strained to the GaN buffer. The solar cells have a fill factor of 75%, short circuit current density of 4.2 mA/cm2, and open circuit voltage of 1.81 V under concentrated AM0 illumination. It was observed that the external quantum efficiency can be improved by optimizing the top contact grid.

[1]  John F. Muth,et al.  Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements , 1997 .

[2]  Salah M. Bedair,et al.  Nearly lattice-matched n, i, and p layers for InGaN p-i-n photodiodes in the 365–500nm spectral range , 2008 .

[3]  D. Redfield,et al.  Multiple‐pass thin‐film silicon solar cell , 1974 .

[4]  Eugene E. Haller,et al.  Small band gap bowing in In1−xGaxN alloys , 2002 .

[5]  Theodore D. Moustakas,et al.  Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition , 1997 .

[6]  Jinmin Li,et al.  Simulation of In0.65Ga0.35 N single-junction solar cell , 2007 .

[7]  Eugene E. Haller,et al.  Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system , 2003 .

[8]  Hiroshi Harima,et al.  Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap. , 2002 .

[9]  Shuji Nakamura,et al.  The Blue Laser Diode: GaN based Light Emitters and Lasers , 1997 .

[10]  N. Teraguchi,et al.  Growth Temperature Dependence of Indium Nitride Crystalline Quality Grown by RF‐MBE , 2002 .

[11]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[12]  Hiroshi Harima,et al.  Optical bandgap energy of wurtzite InN , 2002 .

[13]  James S. Speck,et al.  Electrical characterization of GaN p-n junctions with and without threading dislocations , 1998 .

[14]  A. Animalu,et al.  Band offsets and properties of AlGaAs/GaAs and AlGaN/GaN material systems , 2002 .

[15]  Yasha Yi,et al.  Efficiency enhancement in Si solar cells by textured photonic crystal back reflector , 2006 .

[16]  Ian T. Ferguson,et al.  Design and characterization of GaN∕InGaN solar cells , 2007 .

[17]  J. Leem,et al.  Structural and Optical Properties of InGaN/GaN Multi-Quantum Well Structures with Different Well Widths , 2002 .

[18]  J. Muth,et al.  Ordinary and extraordinary refractive indices for AlxGa1−xN epitaxial layers , 1999 .

[19]  Taeil Kim,et al.  Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films , 1998 .

[20]  Eugene E. Haller,et al.  Unusual properties of the fundamental band gap of InN , 2002 .