A model of anuran retina relating interneurons to ganglion cell responses

[1]  J. L. Teeters,et al.  A simulation system and model for the Anuran Retina , 1990 .

[2]  Shiro Usui,et al.  Physiological engineering model of the retinal horizontal cell layer , 1988, IEEE 1988 International Conference on Neural Networks.

[3]  F. Werblin,et al.  Neural interactions mediating the detection of motion in the retina of the tiger salamander , 1988, Visual Neuroscience.

[4]  D. Copenhagen,et al.  Synaptic transfer of rod signals to horizontal and bipolar cells in the retina of the toad (Bufo marinus). , 1988, The Journal of physiology.

[5]  J. Ewert,et al.  Edge preference of retinal and tectal neurons in common toads (Bufo bufo) in response to worm-like moving stripes: the question of behaviorally relevant ‘position indicators’ , 1987, Journal of Comparative Physiology A.

[6]  E. Merrill,et al.  Functional morphology of frog retinal ganglion cells and their central projections: The dimming detectors , 1987, The Journal of comparative neurology.

[7]  Yillbyung Lee,et al.  A Neural Network Model of Frog Retin: A Discrete Time-Saving Approach , 1986 .

[8]  M. Arbib,et al.  A neural model of interactions subserving prey-predator discrimination and size preference in anuran amphibia. , 1985, Journal of theoretical biology.

[9]  J. Skrzypek Electrical coupling between horizontal cell bodies in the tiger salamander retina , 1984, Vision Research.

[10]  R. Siminoff A cybernetic model of the vertebrate cone retina , 1981, Vision Research.

[11]  J. Ewert,et al.  Investigation of neurons involved in the analysis of gestalt prey features in the frogRana temporaria , 1981, Journal of comparative physiology.

[12]  R Moreno-Díaz,et al.  A theoretical proposal to account for visual computation in a frog's retina. , 1980, International journal of bio-medical computing.

[13]  N. Wioland,et al.  Effects of some amino acids (GABA, glycine, taurine) and of their antagonists (picrotoxin, strychnine) on spatial and temporal features of frog retinal ganglion cell responses , 1980, Pflügers Archiv.

[14]  M. Shantz,et al.  The bipolar cell , 1976, Vision Research.

[15]  K. Naka,et al.  Identification of intracellular responses in the frog retina. , 1972, Brain research.

[16]  P. W. Nye,et al.  The dynamics of inhibitory interaction in a frog receptive field: a paradigm of paracontrast. , 1971, Vision research.

[17]  R. M. Gaze,et al.  Observations on the 'surround' properties of the receptive fields of frog retinal ganglion cells. , 1970, Quarterly journal of experimental physiology and cognate medical sciences.

[18]  D. Varjú,et al.  Ganglion Cells in the Frog Retina: Inhibitory Receptive Field and Long-latency Response , 1967, Nature.

[19]  W. Pitts,et al.  Anatomy and Physiology of Vision in the Frog (Rana pipiens) , 1960, The Journal of general physiology.

[20]  W. Pitts,et al.  What the Frog's Eye Tells the Frog's Brain , 1959, Proceedings of the IRE.

[21]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[22]  H. K. Hartline,et al.  THE RECEPTIVE FIELDS OF OPTIC NERVE FIBERS , 1940 .

[23]  S. Ullman,et al.  A model for the temporal organization of X- and Y-type receptive fields in the primate retina , 2004, Biological Cybernetics.

[24]  J. Ewert,et al.  Movement-sensitive neurones in the toad's retina , 2004, Experimental Brain Research.

[25]  G. Mascetti,et al.  The internal horizontal cell of the frog: spatial summation. , 1989, Acta physiologica et pharmacologica latinoamericana : organo de la Asociacion Latinoamericana de Ciencias Fisiologicas y de la Asociacion Latinoamericana de Farmacologia.

[26]  G. Roth,et al.  Mathematical model and simulation of retina and tectum opticum of lower vertebrates , 1987, Acta biotheoretica.

[27]  O. Grüsser,et al.  Neurophysiology of the Anuran Visual System , 1976 .