Oxidase-like activity of polymer-coated cerium oxide nanoparticles.

Inorganic enzyme? Ceria nanoparticles exhibit unique oxidase-like activity at acidic pH values. These redox catalysts can be used in immunoassays (ELISA) when modified with targeting ligands (see picture; light blue and yellow structures are nanoparticles with attached ligands). This modification allows both for binding and for detection by the catalytic oxidation of sensitive colorimetric dyes (e.g. TMB).

[1]  A new preparation method for nano-sized Ce–Zr–Ba mixed oxide with high surface area , 2004 .

[2]  T. Eling,et al.  Cooxidation of the clinical reagent 3,5,3'5'-tetramethylbenzidine by prostaglandin synthase. , 1982, Cancer research.

[3]  N. Maulik Reactive oxygen species drives myocardial angiogenesis? , 2006, Antioxidants & redox signaling.

[4]  L. Bubacco,et al.  Kinetic and Structural Analysis of the Early Oxidation Products of Dopamine , 2007, Journal of Biological Chemistry.

[5]  M. Das,et al.  Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. , 2007, Biomaterials.

[6]  R. Stroud,et al.  Sol−Gel-Derived Ceria Nanoarchitectures: Synthesis, Characterization, and Electrical Properties , 2006 .

[7]  Sudipta Seal,et al.  The role of cerium redox state in the SOD mimetic activity of nanoceria. , 2008, Biomaterials.

[8]  D. Walsh,et al.  Inflammation and angiogenesis in osteoarthritis. , 2003, Arthritis and rheumatism.

[9]  Gabriel A. Silva,et al.  Seeing the benefits of ceria , 2006, Nature nanotechnology.

[10]  H. Lee,et al.  Synthesis of Pegylated Immunonanoparticles , 2002, Pharmaceutical Research.

[11]  A I Caplan,et al.  Stem cell technology and bioceramics: from cell to gene engineering. , 1999, Journal of biomedical materials research.

[12]  C. Opere,et al.  Pharmacological consequences of oxidative stress in ocular tissues. , 2005, Mutation research.

[13]  Yu Zhang,et al.  Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. , 2007, Nature nanotechnology.

[14]  S. Seal,et al.  Cerium oxide nanoparticles increase the lifespan of cultured brain cells and protect against free radical and mechanical trauma , 2003 .

[15]  Hai Guo,et al.  Green and red upconversion luminescence in CeO2:Er3+ powders produced by 785nm laser , 2007 .

[16]  Kazunori Kataoka,et al.  PEGylated Nanoparticles for Biological and Pharmaceutical Applications , 2003 .

[17]  S. Seal,et al.  Direct Synthesis of Nanoceria in Aqueous Polyhydroxyl Solutions , 2007 .

[18]  P. Scardi,et al.  Influence of Ce3+/Ce4+ ratio on phase stability and residual stress field in ceria-yttria stabilized zirconia plasma-sprayed coatings , 1992, Journal of Materials Science.

[19]  L. Nilsson,et al.  Distinct requirements for optimal growth and In vitro expansion of human CD34(+)CD38(-) bone marrow long-term culture-initiating cells (LTC-IC), extended LTC-IC, and murine in vivo long-term reconstituting stem cells. , 1999, Blood.

[20]  L. Rogers,et al.  Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. , 2007, Cardiovascular research.

[21]  Kei Shinoda,et al.  Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Alexander Wokaun,et al.  Nanoparticles in energy technology: examples from electrochemistry and catalysis. , 2005, Angewandte Chemie.

[23]  M. Kamihira,et al.  Preparation and characteristics of magnetite‐labelled antibody with the use of poly(ethylene glycol) derivatives , 1995, Biotechnology and applied biochemistry.

[24]  Feng Lu,et al.  Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. , 2005, Angewandte Chemie.

[25]  R. Tarnuzzer,et al.  Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. , 2005, Nano letters.

[26]  Y. Suh,et al.  Multifunctional nanosystems at the interface of physical and life sciences , 2009 .

[27]  R. Kötz,et al.  Nanopartikel in der Energietechnik – Beispiele aus der Elektrochemie und Katalyse , 2005 .

[28]  David Schubert,et al.  Cerium and yttrium oxide nanoparticles are neuroprotective. , 2006, Biochemical and biophysical research communications.

[29]  T. Kuwana,et al.  Activation of Glassy Carbon Electrodes by Dispersed Metal Oxide Particles I . Ascorbic Acid Oxidation , 1984 .

[30]  Redispersible hybrid nanopowders: cerium oxide nanoparticle complexes with phosphonated-PEG oligomers. , 2008, ACS nano.

[31]  K. Sharpless,et al.  Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen , 2001 .

[32]  Michele Follen,et al.  Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. , 2003, Cancer research.

[33]  Jeffrey W. Long,et al.  Ionic Nanowires at 600 °C: Using Nanoarchitecture to Optimize Electrical Transport in Nanocrystalline Gadolinium‐Doped Ceria , 2007 .

[34]  Joe G Hollyfield,et al.  Oxidative damage–induced inflammation initiates age-related macular degeneration , 2008, Nature Medicine.

[35]  Jeremiah A. Johnson,et al.  Toward the Syntheses of Universal Ligands for Metal Oxide Surfaces: Controlling Surface Functionality through Click Chemistry , 2006 .

[36]  B. Meunier Catalytic Degradation of Chlorinated Phenols , 2002, Science.

[37]  K. Hirai,et al.  Morphological observation on cell death and phagocytosis induced by ultraviolet irradiation in a cultured human lens epithelial cell line. , 2000, Experimental eye research.

[38]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[39]  S. Seal,et al.  Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides , 2006, Nature nanotechnology.

[40]  E. Lissi,et al.  Formation and decay of the ABTS derived radical cation: A comparison of different preparation procedures , 2002 .

[41]  A. Milam,et al.  Maculas affected by age-related macular degeneration contain increased chelatable iron in the retinal pigment epithelium and Bruch's membrane. , 2003, Archives of ophthalmology.

[42]  C. Kaittanis,et al.  Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. , 2008, Small.

[43]  T. Hyeon,et al.  A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation , 2007 .

[44]  N. Kosem,et al.  Antiproliferation, antioxidation and induction of apoptosis by Garcinia mangostana (mangosteen) on SKBR3 human breast cancer cell line. , 2004, Journal of ethnopharmacology.

[45]  S. Seal,et al.  Synthesis of Nanocrystalline Ceria Particles for High Temperature Oxidation Resistant Coating , 2002 .

[46]  F. Zhang,et al.  Cerium oxide nanoparticles: Size-selective formation and structure analysis , 2002 .

[47]  M. Boulton,et al.  Do blue light filters confer protection against age-related macular degeneration? , 2004, Progress in Retinal and Eye Research.

[48]  Yue Xijuan,et al.  Size-dependent optical properties of nanocrystalline CeO2:Er obtained by combustion synthesis , 2001 .

[49]  A. Pegg,et al.  2-amino-O4-benzylpteridine derivatives: potent inactivators of O6-alkylguanine-DNA alkyltransferase. , 2004, Journal of medicinal chemistry.

[50]  T. Sakata,et al.  Synthesis of BN-coated CeO2 fine powder as a new UV blocking material , 2000 .

[51]  J. Abrams,et al.  Increased exhaled nitric oxide following autologous peripheral hematopoietic stem-cell transplantation: a potential marker of idiopathic pneumonia syndrome. , 2004, Chest.

[52]  M. Tsai The study of the synthesis of nano-grade cerium oxide powder , 2004 .

[53]  D. Astruc,et al.  Nanopartikel als regenerierbare Katalysatoren: an der Nahtstelle zwischen homogener und heterogener Katalyse , 2005 .

[54]  F. Wen,et al.  Subtype lesions of neovascular age-related macular degeneration in Chinese patients , 2007, Graefe's Archive for Clinical and Experimental Ophthalmology.

[55]  P. Low,et al.  Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. , 2005, Analytical biochemistry.

[56]  S. Seal,et al.  Nanoceria exhibit redox state-dependent catalase mimetic activity. , 2010, Chemical communications.

[57]  Gerd Ritter,et al.  PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. , 2008, ACS nano.

[58]  Freddy T. Nguyen,et al.  Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. , 2007, Nano letters.

[59]  F. Liang,et al.  Age-related macular degeneration: a target for nanotechnology derived medicines , 2007, International journal of nanomedicine.

[60]  Hong-Wan Ng,et al.  Forming near net shape free-standing components by plasma spraying , 2002 .

[61]  Do Kyung Kim,et al.  Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. , 2006, Journal of the American Chemical Society.

[62]  S. Zeng,et al.  Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. , 2008, International journal of pharmaceutics.

[63]  S. Seal,et al.  Surface-Derivatized Nanoceria with Human Carbonic Anhydrase II Inhibitors and Fluorophores: A Potential Drug Delivery Device , 2007 .