Habitat Deterioration, Habitat Destruction, and Metapopulation Persistence in a Heterogenous Landscape

Levins's unstructured metapopulation model predicts that the equilibrium fraction of empty habitat patches is a constant function of the fraction h of suitable patches in the landscape and that this constant equals the threshold value for metapopulation persistence. Levins's model thus suggests that the minimum amount of suitable habitat necessary for metapopulation persistence can be estimated from the fraction of empty patches at steady state. In this paper we construct several more realistic structured metapopulation models that include variation in patch quality and the rescue effect. These models predict both positive and negative correlations between the fractions of suitable patches and empty patches. The type of correlation depends in an intricate manner on the strength of the rescue effect and on the quality distribution of the patches to be destroyed. Empty patches can be considered as the resource limiting metapopulation growth. Our results demonstrate that the correlation between the fractions of suitable patches and empty patches is positive if and only if the average value of the resource decreases as the number of patches increases. Copyright 1997 Academic Press. Copyright 1997 Academic Press

[1]  Atte Moilanen,et al.  HABITAT DESTRUCTION AND COEXISTENCE OF COMPETITORS IN A SPATIALLY REALISTIC METAPOPULATION MODEL , 1995 .

[2]  V. Heywood,et al.  Global Biodiversity Assessment , 1996 .

[3]  H. Pulliam,et al.  Sources, Sinks, and Population Regulation , 1988, The American Naturalist.

[4]  M. Gilpin,et al.  Metapopulation Biology: Ecology, Genetics, and Evolution , 1997 .

[5]  Ilkka Hanski,et al.  Coexistence of Competitors in Patchy Environment , 1983 .

[6]  Simon A. Levin,et al.  Stochastic Spatial Models: A User's Guide to Ecological Applications , 1994 .

[7]  Frederick R. Adler,et al.  Persistence in patchy irregular landscapes , 1994 .

[8]  Olof J. Staffans,et al.  Volterra Integral and Functional Equations , 1990 .

[9]  I. Hanski,et al.  15 – Butterfly Metapopulations , 1997 .

[10]  I. Hanski,et al.  Patch-occupancy dynamics in fragmented landscapes. , 1994, Trends in ecology & evolution.

[11]  O. Diekmann,et al.  On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations , 1990, Journal of mathematical biology.

[12]  Mats Gyllenberg,et al.  Uniting Two General Patterns in the Distribution of Species , 1997, Science.

[13]  C. Dytham Habitat destruction and competitive coexistence: a cellular model. Commentary , 1994 .

[14]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[15]  A. M'Kendrick Applications of Mathematics to Medical Problems , 1925, Proceedings of the Edinburgh Mathematical Society.

[16]  J. Yorke,et al.  A Deterministic Model for Gonorrhea in a Nonhomogeneous Population , 1976 .

[17]  Mats Gyllenberg,et al.  Structured Metapopulation Models , 1997 .

[18]  G. Webb Theory of Nonlinear Age-Dependent Population Dynamics , 1985 .

[19]  John H. Lawton,et al.  Animal distributions : patterns and processes , 1994 .

[20]  S. I. Rubinow,et al.  Some mathematical problems in biology , 1975 .

[21]  Mats Gyllenberg,et al.  Two General Metapopulation Models and the Core-Satellite Species Hypothesis , 1993, The American Naturalist.

[22]  Mats Gyllenberg,et al.  Minimum Viable Metapopulation Size , 1996, The American Naturalist.

[23]  P. Sjögren Extinction and isolation gradients in metapopulations: the case of the pool frog (Rana lessonae) , 1991 .

[24]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[25]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[26]  R. Paine,et al.  Disturbance, patch formation, and community structure. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Maurice W. Sabelis,et al.  Reflections and calculations on a prey-predator-patch problem , 1988 .

[28]  R. Levins Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control , 1969 .

[29]  S. Nee How populations persist , 1994, Nature.

[30]  James H. Brown,et al.  Turnover Rates in Insular Biogeography: Effect of Immigration on Extinction , 1977 .

[31]  S. A. Temple,et al.  The Problem of Avian Extinctions , 1986 .

[32]  R. May,et al.  Infectious Diseases of Humans: Dynamics and Control , 1991, Annals of Internal Medicine.

[33]  O. Diekmann,et al.  On the formulation and analysis of general deterministic structured population models II. Nonlinear theory , 2000 .

[34]  Simon R. Leather,et al.  Individuals, populations and patterns in ecology. , 1994 .

[35]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[36]  Mats Gyllenberg,et al.  Single-species metapopulation dynamics: A structured model , 1992 .

[37]  S. Levin,et al.  Ecosystem Analysis and Prediction , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[38]  A. J. Hall Infectious diseases of humans: R. M. Anderson & R. M. May. Oxford etc.: Oxford University Press, 1991. viii + 757 pp. Price £50. ISBN 0-19-854599-1 , 1992 .

[39]  Ilkka Hanski,et al.  Metapopulation persistence of an endangered butterfly in a fragmented landscape , 1995 .

[40]  Ricard V. Solé,et al.  Habitat Fragmentation and Extinction Thresholds in Spatially Explicit Models , 1996 .

[41]  Ilkka Hanski,et al.  Multiple equilibria in metapopulation dynamics , 1995, Nature.

[42]  O. Diekmann,et al.  The Dynamics of Physiologically Structured Populations , 1986 .

[43]  Mats Gyllenberg,et al.  Quasi-stationary distributions of a stochastic metapopulation model , 1994 .

[44]  H. Andrén,et al.  Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review , 1994 .