Temporal Order Detection and Coding in Nervous Systems

This letter discusses temporal order coding and detection in nervous systems. Detection of temporal order in the external world is an adaptive function of nervous systems. In addition, coding based on the temporal order of signals can be used as an internal code. Such temporal order coding is a subset of temporal coding. We discuss two examples of processing the temporal order of external events: the auditory location detection system in birds and the visual direction detection system in flies. We then discuss how somatosensory stimulus intensities are translated into a temporal order code in the human peripheral nervous system. We next turn our attention to input order coding in the mammalian cortex. We review work demonstrating the capabilities of cortical neurons for detecting input order. We then discuss research refuting and demonstrating the representation of stimulus features in the cortex by means of input order. After some general theoretical considerations on input order detection and coding, we conclude by discussing the existing and potential use of input order coding in neuromorphic engineering.

[1]  L A JEFFRESS,et al.  A place theory of sound localization. , 1948, Journal of comparative and physiological psychology.

[2]  Eve Marder,et al.  Precise Temperature Compensation of Phase in a Rhythmic Motor Pattern , 2010, PLoS biology.

[3]  W. Singer,et al.  Gamma-Phase Shifting in Awake Monkey Visual Cortex , 2010, The Journal of Neuroscience.

[4]  G. Shepherd,et al.  Emerging rules for the distributions of active dendritic conductances , 2002, Nature Reviews Neuroscience.

[5]  Martina Medkovatt,et al.  Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio , 2004 .

[6]  E. Rolls,et al.  Information in the first spike, the order of spikes, and the number of spikes provided by neurons in the inferior temporal visual cortex , 2006, Vision Research.

[7]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[8]  Arnaud Delorme,et al.  Face identification using one spike per neuron: resistance to image degradations , 2001, Neural Networks.

[9]  Benjamin Torben-Nielsen,et al.  An Inverse Approach for Elucidating Dendritic Function , 2010, Front. Comput. Neurosci..

[10]  Benjamin Torben-Nielsen,et al.  Systematic mapping between dendritic function and structure , 2009, Network.

[11]  Michael Rudolph,et al.  Do Neocortical Pyramidal Neurons Display Stochastic Resonance? , 2001, Journal of Computational Neuroscience.

[12]  J. Licklider,et al.  A duplex theory of pitch perception , 1951, Experientia.

[13]  Tobi Delbrück,et al.  Silicon retina with correlation-based, velocity-tuned pixels , 1993, IEEE Trans. Neural Networks.

[14]  Charles M Higgins,et al.  The computational basis of an identified neuronal circuit for elementary motion detection in dipterous insects. , 2004, Visual neuroscience.

[15]  John Lazzaro,et al.  A Silicon Model Of Auditory Localization , 1989, Neural Computation.

[16]  J Lazzaro,et al.  Silicon modeling of pitch perception. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Janina Ferbinteanu,et al.  Relative spike timing in pairs of hippocampal neurons distinguishes the beginning and end of journeys. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[18]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[19]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[20]  M. Konishi,et al.  A circuit for detection of interaural time differences in the brain stem of the barn owl , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[22]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[23]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[24]  A. van Schaik,et al.  An Analog VLSI Model of Periodicity Extraction in the Human Auditory System , 1999 .

[25]  W. Singer,et al.  Synchrony Makes Neurons Fire in Sequence, and Stimulus Properties Determine Who Is Ahead , 2011, The Journal of Neuroscience.

[26]  L. Trussell,et al.  Synaptic mechanisms for coding timing in auditory neurons. , 1999, Annual review of physiology.

[27]  Jonathan Z. Simon,et al.  Modeling coincidence detection in nucleus laminaris , 2003, Biological Cybernetics.

[28]  Rahul Sarpeshkar,et al.  Pulse-Based Analog VLSI Velocity Sensors , 1997 .

[29]  Christof Koch,et al.  A Robust Analog VLSI Reichardt Motion Sensor , 2000 .

[30]  T. Sejnowski,et al.  Mapping function onto neuronal morphology. , 2007, Journal of neurophysiology.

[31]  R. Johansson,et al.  First spikes in ensembles of human tactile afferents code complex spatial fingertip events , 2004, Nature Neuroscience.

[32]  A. Borst,et al.  Dendritic integration and its role in computing image velocity. , 1998, Science.

[33]  A. Delorme,et al.  Early Cortical Orientation Selectivity: How Fast Inhibition Decodes the Order of Spike Latencies , 2003, Journal of Computational Neuroscience.

[34]  M. Konishi,et al.  Axonal delay lines for time measurement in the owl's brainstem. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[35]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[36]  Jan Van der Spiegel,et al.  A focal plane visual motion measurement sensor , 1997 .

[37]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[38]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[39]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[40]  G. Buzsáki,et al.  The entorhino-septo-supramammillary nucleus connection in the rat: morphological basis of a feedback mechanism regulating hippocampal theta rhythm , 1999, Neuroscience.

[41]  Andreas G. Andreou,et al.  Silicon retina for motion computation , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.

[42]  Gary D. Bernard,et al.  A proposed mechanism for multiplication of neural signals , 1976, Biological Cybernetics.

[43]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[44]  C. E. Carr,et al.  Are Neurons Adapted for Specific Computations? Examples from Temporal Coding in the Auditory System , 2005 .

[45]  Ingvars Birznieks,et al.  Encoding of tangential torque in responses of tactile afferent fibres innervating the fingerpad of the monkey , 2010, The Journal of physiology.

[46]  Bruce R. Blazar,et al.  Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons , 2010 .

[47]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[48]  D. Oertel The role of timing in the brain stem auditory nuclei of vertebrates. , 1999, Annual review of physiology.

[49]  Jacques Gautrais,et al.  Rapid Visual Processing using Spike Asynchrony , 1996, NIPS.

[50]  Irina Sinakevitch,et al.  Chemical neuroanatomy of the fly's movement detection pathway , 2004, The Journal of comparative neurology.

[51]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[52]  X. Arreguit,et al.  A CMOS motion detector system for pointing devices , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[53]  Wolf Singer,et al.  Time as coding space? , 1999, Current Opinion in Neurobiology.

[54]  J. O’Keefe,et al.  Geometric determinants of the place fields of hippocampal neurons , 1996, Nature.

[55]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[56]  Catherine E. Carr,et al.  Evolution of Time Coding Systems , 1999, Neural Computation.

[57]  Charles M. Higgins,et al.  Pulse-based 2-D motion sensors , 1999 .

[58]  G. Tamás,et al.  Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro , 1998, The Journal of physiology.

[59]  John Lazzaro,et al.  A Delay-Line Based Motion Detection Chip , 1990, NIPS.