Advances in central receivers for concentrating solar applications

[1]  Takeo Kato,et al.  Design and Modeling , 2019, Journal of Japan Society of Kansei Engineering.

[2]  S. Abdel-Khalik,et al.  Highlights of the high-temperature falling particle receiver project: 2012 - 2016 , 2017 .

[3]  Judith C. Gomez-Vidal,et al.  Corrosion of alloys in a chloride molten salt (NaCl-LiCl) for solar thermal technologies , 2016 .

[4]  M. Kevin Drost,et al.  Numbering-Up of Microscale Devices for Megawatt-Scale Supercritical Carbon Dioxide Concentrating Solar Power Receivers , 2016 .

[5]  W. Stein,et al.  Mechanical Stress Optimisation in a Directly Illuminated Supercritical Carbon Dioxide Solar Receiver , 2016 .

[6]  Clifford K. Ho,et al.  A review of high-temperature particle receivers for concentrating solar power , 2016 .

[7]  Clifford K. Ho,et al.  Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation , 2016 .

[8]  Jesus D. Ortega,et al.  Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Structural and creep-fatigue evaluation , 2016 .

[9]  Clifford K. Ho,et al.  Technoeconomic Analysis of Alternative Solarized s-CO2 Brayton Cycle Configurations , 2016 .

[10]  John W. Kelton,et al.  Fractal-Like Materials Design with Optimized Radiative Properties for High-Efficiency Solar Energy Conversion , 2016 .

[11]  Jianqiang Wang,et al.  Determination and evaluation of the thermophysical properties of an alkali carbonate eutectic molten salt. , 2016, Faraday discussions.

[12]  C. Ho,et al.  Volumetric Particle Receivers for Increased Light Trapping and Heating , 2016 .

[13]  Kenneth M. Armijo,et al.  Performance Evaluation of a High-Temperature Falling Particle Receiver , 2016 .

[14]  Jesus D. Ortega,et al.  Design and Modeling of Light-Trapping Tubular Receiver Panels , 2016 .

[15]  S. Abdel-Khalik,et al.  Solar Simulator Efficiency Testing of Lab-Scale Particle Heating Receiver at Elevated Operating Temperatures , 2016 .

[16]  S. Abdel-Khalik,et al.  On-sun testing of an advanced falling particle receiver system , 2016 .

[17]  Akane Takeuchi,et al.  Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: 30-kWth performance test using a big sun-simulator , 2016 .

[18]  Jesús Fernández-Reche,et al.  CFD analysis of supercritical CO2 used as HTF in a solar tower receiver , 2016 .

[19]  Paul Gauché,et al.  The hybrid pressurized air receiver (HPAR) in the SUNDISC cycle , 2016 .

[20]  A. Abánades,et al.  A review on the application of liquid metals as heat transfer fluid in Concentrated Solar Power technologies , 2016 .

[21]  Hadrien Benoit,et al.  Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients , 2016 .

[22]  Craig Turchi,et al.  On the Path to SunShot. Advancing Concentrating Solar Power Technology, Performance, and Dispatchability , 2016 .

[23]  Peiwen Li,et al.  Vapor pressure and corrosivity of ternary metal-chloride molten-salt based heat transfer fluids for use in concentrating solar power systems , 2015 .

[24]  J. Coventry,et al.  A review of sodium receiver technologies for central receiver solar power plants , 2015 .

[25]  Robbie McNaughton,et al.  Effect of Pressure Drop and Reheating on Thermal and Exergetic Performance of Supercritical Carbon Dioxide Brayton Cycles Integrated With a Solar Central Receiver , 2015 .

[26]  Zhiwen Ma,et al.  Granular Flow and Heat-Transfer Study in a Near-Blackbody Enclosed Particle Receiver , 2015 .

[27]  Joshua M. Christian,et al.  Coupled optical-thermal-fluid and structural analyses of novel light-trapping tubular panels for concentrating solar power receivers , 2015, SPIE Optics + Photonics for Sustainable Energy.

[28]  A. Ortona,et al.  Tubular Si-infiltrated SiCf/SiC composites for solar receiver application – Part 2: Thermal performance analysis and prediction , 2015 .

[29]  N. Siegel,et al.  The Development of Direct Absorption and Storage Media for Falling Particle Solar Central Receivers , 2015 .

[30]  Hadrien Benoit,et al.  On-sun demonstration of a 750 °C heat transfer fluid for concentrating solar systems: Dense particle suspension in tube , 2015 .

[31]  Robert Pitz-Paal,et al.  Prototype Testing of a Centrifugal Particle Receiver for High-Temperature Concentrating Solar Applications , 2015 .

[32]  Charles J. Rymal,et al.  High Flux Microscale Solar Thermal Receiver for Supercritical Carbon Dioxide Cycles , 2015 .

[33]  Clifford K. Ho,et al.  Structural Analysis of a Direct Heated Tubular Solar Receiver for Supercritical CO2 Brayton Cycle , 2015 .

[34]  Clifford K. Ho,et al.  Coupled Optical-Thermal-Fluid Modeling of a Directly Heated Tubular Solar Receiver for Supercritical CO2 Brayton Cycle , 2015 .

[35]  W. Stein,et al.  High-Temperature Heat Transport and Storage Using LBE Alloy for Concentrated Solar Power System , 2015 .

[36]  Austin Fleming,et al.  Thermal Modeling of a Multi-Cavity Array Receiver Performance for Concentrating Solar Power Generation , 2015 .

[37]  Said I. Abdel-Khalik,et al.  Measurement of Particulate Flow in Discrete Structure Particle Heating Receivers , 2015 .

[38]  Clifford K. Ho,et al.  Novel Tubular Receiver Panel Configurations for Increased Efficiency of High-Temperature Solar Receivers , 2015 .

[39]  Nathan P. Siegel,et al.  Characterization of Particle Flow in a Free-Falling Solar Particle Receiver , 2015 .

[40]  E. Stefanakos,et al.  Development of a Solar Receiver Based on Compact Heat Exchanger Technology for Supercritical Carbon Dioxide Power Cycles , 2015 .

[41]  P. Ndione,et al.  High Temperature Performance of High-efficiency, Multi-layer Solar Selective Coatings for Tower Applications☆ , 2015 .

[42]  Fu-Xin Wang,et al.  Numerical Simulation of Quartz Tube Solid Particle Air Receiver , 2015 .

[43]  Clifford K. Ho,et al.  System Design of a 1 MW North-facing, Solid Particle Receiver , 2015 .

[44]  Andreas Fritsch,et al.  Construction of a Test Facility for Demonstration of a Liquid Lead-bismuth-cooled 10 kW Thermal Receiver in a Solar Furnace Arrangement - SOMMER☆ , 2015 .

[45]  Nicolas Calvet,et al.  Gravity-fed combined solar receiver/storage system using sand particles as heat collector, heat transfer and thermal energy storage media , 2015 .

[46]  Robert Pitz-Paal,et al.  Assessment of a falling solid particle receiver with numerical simulation , 2015 .

[47]  T. W. von Backström,et al.  Initial analysis on the novel Spiky Central Receiver Air Pre-heater (SCRAP) pressurized air receiver , 2015 .

[48]  O. Raccurt,et al.  Study of the Stability of a Selective Solar Absorber Coating under Air and High Temperature Conditions , 2015 .

[49]  Christopher Sansom,et al.  Coatings for concentrating solar systems – A review , 2015 .

[50]  F. Bai,et al.  Experimental Study of a Single Quartz Tube Solid Particle Air Receiver , 2015 .

[51]  Robert Pitz-Paal,et al.  Numerical Simulation of a Centrifugal Particle Receiver for High-Temperature Concentrating Solar Applications , 2015 .

[52]  Said I. Abdel-Khalik,et al.  Numerical simulation of particulate flow in interconnected porous media for central particle-heating receiver applications , 2015 .

[53]  Mool C. Gupta,et al.  High temperature spectral selective coatings for solar thermal systems by laser sintering , 2015 .

[54]  Tae Kyoung Kim,et al.  Black oxide nanoparticles as durable solar absorbing material for high-temperature concentrating solar power system , 2015 .

[55]  F. Miller,et al.  Performance analysis and preliminary design optimization of a Small Particle Heat Exchange Receiver for solar tower power plants , 2015 .

[56]  Hao Wang,et al.  Highly-Efficient Selective Metamaterial Absorber for High-Temperature Solar Thermal Energy Harvesting , 2014, 1411.6584.

[57]  K. Cen,et al.  Optical and thermal performance of a high-temperature spiral solar particle receiver , 2014 .

[58]  Clifford K. Ho,et al.  Reduction of radiative heat losses for solar thermal receivers , 2014, Optics & Photonics - Solar Energy + Applications.

[59]  Robert Pitz-Paal,et al.  On the influence of rotation on thermal convection in a rotating cavity for solar receiver applications , 2014 .

[60]  G. Glatzmaier,et al.  Fluidized Bed Technology for Concentrating Solar Power With Thermal Energy Storage , 2014 .

[61]  John W. Kelton,et al.  Experimental and Numerical Studies of Air Curtains for Falling Particle Receivers , 2014 .

[62]  Clifford K. Ho,et al.  High-Temperature Receiver Designs for Supercritical CO2 Closed-Loop Brayton Cycles , 2014 .

[63]  Vinod Narayanan,et al.  Numerical Design of a Planar High-Flux Microchannel Solar Receiver , 2014 .

[64]  Allison Gray,et al.  Structural Design Considerations for Tubular Power Tower Receivers Operating at 650°C , 2014 .

[65]  Said I. Abdel-Khalik,et al.  High Temperature Durability of Solid Particles for Use in Particle Heating Concentrator Solar Power Systems , 2014 .

[66]  Zhiwen Ma,et al.  Granular Flow and Heat Transfer Study in a Near-Blackbody Enclosed Particle Receiver , 2014 .

[67]  Ty Neises,et al.  Structural Design Considerations for Tubular Power Tower Receivers Operating at 650 Degrees C: Preprint , 2014 .

[68]  Fahad A. Al-Sulaiman,et al.  Performance analysis of supercritical CO2 Brayton cycles integrated with solar central receiver system , 2014, 2014 5th International Renewable Energy Congress (IREC).

[69]  A. R. Mahoney,et al.  Characterization of Pyromark 2500 Paint for High-Temperature Solar Receivers , 2014 .

[70]  P. Schwarzbözl,et al.  Numerical Investigation of Flow and Heat Transfer in a Volumetric Solar Receiver , 2013 .

[71]  C. Turchi,et al.  Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems , 2013 .

[72]  Hadrien Benoit,et al.  Dense suspension of solid particles as a new heat transfer fluid for concentrated solar thermal plants: on-sun proof of concept , 2013 .

[73]  Ankit A. Shah,et al.  Spectral selective surfaces for concentrated solar power receivers by laser sintering of tungsten micro and nano particles , 2013 .

[74]  Liejin Guo,et al.  Solar receiver/reactor for hydrogen production with biomass gasification in supercritical water , 2013 .

[75]  W. Stein,et al.  Thermogravimetric Study of Oxidation-Resistant Alloys for High-Temperature Solar Receivers , 2013 .

[76]  Joshua M. Christian,et al.  Evaluation of Air Recirculation for Falling Particle Receivers. , 2013 .

[77]  Fletcher Miller,et al.  Three-Dimensional Fluid Dynamics and Radiative Heat Transfer Modeling of a Small Particle Solar Receiver , 2013 .

[78]  J. Pacio,et al.  Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems , 2013 .

[79]  R. Pitchumani,et al.  Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power , 2013 .

[80]  Hohyun Lee,et al.  Silicon Carbide Solar Receiver for Residential Scale Concentrated Solar Power , 2012 .

[81]  Robert A. Taylor,et al.  Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems , 2012 .

[82]  A. R. Mahoney,et al.  Characterization of Pyromark 2500 for High-Temperature Solar Receivers , 2012 .

[83]  Fletcher Miller,et al.  Coupled Fluid Flow and Radiation Modeling of a Cylindrical Small Particle Solar Receiver , 2012 .

[84]  Elisa Sani,et al.  Spectrally selective ultra-high temperature ceramic absorbers for high-temperature solar plants , 2012 .

[85]  Gregory J. Kolb,et al.  An evaluation of possible next-generation high temperature molten-salt power towers. , 2011 .

[86]  E. Sani,et al.  Hafnium and tantalum carbides for high temperature solar receivers , 2011 .

[87]  Matthias Hänel,et al.  Jülich Solar Power Tower—Experimental Evaluation of the Storage Subsystem and Performance Calculation , 2011 .

[88]  Reiner Buck,et al.  Face-Down Solid Particle Receiver Using Recirculation , 2011 .

[89]  Siri S. Khalsa,et al.  Radiation Boundary Conditions for Computational Fluid Dynamics Models of High-Temperature Cavity Receivers , 2011 .

[90]  Fletcher Miller,et al.  Thermodynamic Cycles for a Small Particle Heat Exchange Receiver Used in Concentrating Solar Power Plants , 2011 .

[91]  Antonio L. Avila-Marin,et al.  Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review , 2011 .

[92]  Nathan P. Siegel,et al.  Solar Selective Coatings for Concentrating Solar Power Central Receivers , 2011, International Thermal Spray Conference.

[93]  Lars Amsbeck,et al.  TEST OF A SOLAR-HYBRID MICROTURBINE SYSTEM AND EVALUATION OF STORAGE DEPLOYMENT , 2010 .

[94]  B. Kelly,et al.  Advanced Thermal Storage for Central Receivers with Supercritical Coolants , 2010 .

[95]  Nathan P. Siegel,et al.  Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation , 2010 .

[96]  Gregory J. Kolb,et al.  Experimental and simulation study on wind affecting particle flow in a solar receiver , 2010 .

[97]  A. Steinfeld,et al.  Heat Transfer Analysis of a Novel Pressurized Air Receiver for Concentrated Solar Power via Combined Cycles , 2009 .

[98]  Nathan P. Siegel,et al.  Wind effect on the performance of solid particle solar receivers with and without the protection of an aerowindow , 2009 .

[99]  Ralf Uhlig,et al.  Development of a Broadband Antireflection Coated Transparent Silica Window for a Solar-Hybrid Microturbine System , 2009 .

[100]  Ralf Uhlig,et al.  Development of a tube receiver for a solar-hybrid microturbine system , 2008 .

[101]  J. Karni,et al.  Heat transfer in a directly irradiated solar receiver/reactor for solid–gas reactions , 2007 .

[102]  N. Siegel,et al.  Central-Station Solar Hydrogen Power Plant , 2007 .

[103]  P. Peterson,et al.  High-Temperature Liquid-Fluoride-Salt Closed-Brayton-Cycle Solar Power Towers , 2007 .

[104]  Thorsten Denk,et al.  Test and evaluation of a solar powered gas turbine system , 2006 .

[105]  M. Driscoll,et al.  The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles , 2006 .

[106]  B. Hoffschmidt,et al.  Performance Evaluation of the 200-kWth HiTRec-II Open Volumetric Air Receiver , 2003 .

[107]  Fletcher Miller,et al.  Thermal Modelling of Small Particle Solar Central Receiver , 2000 .

[108]  Anton Meier,et al.  A predictive CFD model for a falling particle receiver/reactor exposed to concentrated sunlight , 1999 .

[109]  Abraham Kribus,et al.  The “Porcupine”: A Novel High-Flux Absorber for Volumetric Solar Receivers , 1998 .

[110]  Harald Ries,et al.  Inherent limitations of volumetric solar receivers , 1996 .

[111]  Aldo Steinfeld,et al.  Experimental investigation of an atmospheric-open cyclone solar reactor for solid-gas thermochemical reactions , 1992 .

[112]  Fletcher Miller,et al.  Theoretical analysis of a high-temperature small-particle solar receiver , 1991 .

[113]  D. Meeker,et al.  High-temperature stability of ternary nitrate molten salts for solar thermal energy systems , 1990 .

[114]  Ralph Greif,et al.  Gas-Particle Flow Within a High Temperature Solar Cavity Receiver Including Radiation Heat Transfer , 1987 .

[115]  R. W. Bradshaw,et al.  A review of the chemical and physical properties of molten alkali nitrate salts and their effect on materials used for solar central receivers , 1987 .

[116]  P. K. Falcone A handbook for solar central receiver design , 1986 .

[117]  T. M. Thomas,et al.  Exploratory corrosion tests on alloys in molten salts at 900 °C , 1986 .

[118]  B. R. Steele,et al.  A solid particle central receiver for solar energy , 1986 .

[119]  J. E. Noring,et al.  Assessment of a solid particle receiver for a high temperature solar central receiver system , 1985 .

[120]  B. R. Steele,et al.  Solid particle receiver experiments: radiant heat test , 1984 .

[121]  G. Flamant Theoretical and experimental study of radiant heat transfer in a solar fluidized‐bed receiver , 1982 .

[122]  G. Angelino Carbon Dioxide Condensation Cycles For Power Production , 1968 .

[123]  M. Romero,et al.  Next generation of liquid metal and other high-performance receiver designs for concentrating solar thermal (CST) central tower systems , 2017 .

[124]  Clifford K. Ho,et al.  Concentrating Solar Power Gen3 Demonstration Roadmap , 2017 .

[125]  D. E. Beasley,et al.  Fluidized-bed technology , 2016 .

[126]  A. Ortona,et al.  Tubular Si-infiltrated SiCf/SiC composites for solar receiver application – Part 1: Fabrication by replica and electrophoretic deposition , 2015 .

[127]  Said I. Abdel-Khalik,et al.  Technology Advancements for Next Generation Falling Particle Receivers , 2014 .

[128]  James K. Yuan,et al.  Physical Properties of Solid Particle Thermal Energy Storage Media for Concentrating Solar Power Applications , 2014 .

[129]  Fenglian Bai,et al.  Thermal Performance of a Quartz Tube Solid Particle Air Receiver , 2014 .

[130]  Gilles Flamant,et al.  A New Heat Transfer Fluid for Concentrating Solar Systems: Particle Flow in Tubes , 2014 .

[131]  Brian D. Iverson,et al.  Review of high-temperature central receiver designs for concentrating solar power , 2014 .

[132]  Kozo Nakamura,et al.  Flux Measurement of a New Beam-down Solar Concentrating System in Miyazaki for Demonstration of Thermochemical Water Splitting Reactors , 2014 .

[133]  Ralf Uhlig,et al.  Proof of Concept Test of a Centrifugal Particle Receiver , 2014 .

[134]  Joshua M. Christian,et al.  Alternative Designs of a High Efficiency, North-facing, Solid Particle Receiver , 2014 .

[135]  A. Fritsch,et al.  Liquid Metals as Efficient Coolants for High-intensity Point-focus Receivers: Implications to the Design and Performance of Next-generation CSP Systems , 2014 .

[136]  Reiner Buck,et al.  Operation strategies for falling particle receivers , 2013 .

[137]  P. Salatino,et al.  Development of a Novel Concept of Solar Receiver/Thermal Energy Storage System Based on Compartmented Dense Gas Fluidized Beds , 2013 .

[138]  Ralf Uhlig,et al.  Transient stresses at metallic solar tube receivers , 2011 .

[139]  Nathan P. Siegel,et al.  Improved High Temperature Solar Absorbers for Use in Concentrating Solar Power Central Receiver Applications , 2011 .

[140]  Nathan P. Siegel,et al.  CFD Simulation and Performance Analysis of Alternative Designs for High-Temperature Solid Particle Receivers , 2011 .

[141]  Yitung Chen,et al.  Review of study on solid particle solar receivers , 2010 .

[142]  Yitung Chen,et al.  Protection of an Aerowindow, One Scheme to Enhance the Cavity Efficiency of a Solid Particle Solar Receiver , 2009 .

[143]  C. Ho,et al.  Modeling On-Sun Tests of a Prototype Solid Particle Receiver for Concentrating Solar Power Processes and Storage , 2009 .

[144]  Yitung Chen,et al.  Numerical Analysis on the Performance of the Solid Solar Particle Receiver With the Influence of Aerowindow , 2008 .

[145]  Zhang Yaoming,et al.  Discussion of Mechanical Design for Pressured Cavity-Air-Receiver in Solar Power Tower System , 2008 .

[146]  P. Lettieri,et al.  An introduction to heat transfer , 2007 .

[147]  N. Siegel,et al.  CFD Modeling of Gas Particle Flow Within a Solid Particle Solar Receiver , 2006 .

[148]  J. Vitko,et al.  ASCUAS: a solar central receiver utilizing a solid thermal carrier , 1982 .

[149]  Gilles Flamant,et al.  Experimental aspects of the thermochemical conversion of solar energy; Decarbonation of CaCO3 , 1980 .

[150]  P. Suter,et al.  Study of solid-gas-suspensions used for direct absorption of concentrated solar radiation , 1979 .

[151]  C C Monismith,et al.  STRUCTURAL DESIGN CONSIDERATIONS , 1976 .

[152]  C. P. Burger,et al.  Thermal modeling , 1975 .