Birational superrigidity and slope stability of Fano manifolds

[1]  Chi Li Yau-Tian-Donaldson correspondence for K-semistable Fano manifolds , 2013, 1302.6681.

[2]  Kento Fujita Towards a criterion for slope stability of Fano manifolds along divisors , 2013, 1301.4538.

[3]  Luca Roversi,et al.  Communication, and concurrency with logic-based restriction inside a calculus of structures , 2012, ArXiv.

[4]  G. Tian K‐Stability and Kähler‐Einstein Metrics , 2012, 1211.4669.

[5]  S. Donaldson,et al.  Kahler-Einstein metrics and stability , 2012, 1210.7494.

[6]  Y. Odaka On Parametrization, optimization and triviality of test configurations , 2012, 1201.0692.

[7]  Xu Chen,et al.  Special test configurations and $K$-stability of Fano varieties , 2011, 1111.5398.

[8]  Kento Fujita Fano manifolds which are not slope stable along curves , 2011, 1107.1362.

[9]  Ji-Heon Park,et al.  Slopes of smooth curves on Fano manifolds , 2010, 1005.4310.

[10]  Y. Odaka,et al.  Alpha invariant and K-stability of Q-Fano varieties , 2010, 1011.6131.

[11]  Yongnam Lee,et al.  Slope of smooth rational curves in a Fano manifold , 2010 .

[12]  F. Jugeau Hadron potentials within the gauge/string correspondence , 2008, 0812.4903.

[13]  T. Mabuchi A stronger concept of K-stability , 2009, 0910.4617.

[14]  Y. Odaka A generalization of the Ross--Thomas slope theory , 2009, 0910.1794.

[15]  A. Pukhlikov Birational Geometry of Algebraic Varieties with a Pencil of Fano Cyclic Covers , 2009 .

[16]  T. Mabuchi K-stability of constant scalar curvature polarization , 2008, 0812.4093.

[17]  I. Cheltsov,et al.  LOG CANONICAL THRESHOLDS OF SMOOTH FANO THREEFOLDS , 2008 .

[18]  I. Cheltsov,et al.  Log canonical thresholds of smooth Fano threefolds. With an appendix by Jean-Pierre Demailly , 2008, 0806.2107.

[19]  J. Stoppa K-stability of constant scalar curvature Kähler manifolds , 2008, 0803.4095.

[20]  A. Pukhlikov Birationally rigid varieties. I. Fano varieties , 2007 .

[21]  James McKernan,et al.  Existence of minimal models for varieties of log general type , 2006, 0808.1929.

[22]  T. Fernex Birationally rigid hypersurfaces , 2006, math/0604213.

[23]  G. Tian,et al.  Geometry of Kähler metrics and foliations by holomorphic discs , 2005, math/0507148.

[24]  S. Donaldson Lower bounds on the Calabi functional , 2005, math/0506501.

[25]  Richard P. Thomas,et al.  A study of the Hilbert-Mumford criterion for the stability of projective varieties , 2004, math/0412519.

[26]  A. Pukhlikov Birationally rigid Fano cyclic covers , 2004, math/0411198.

[27]  I. Cheltsov Birationally superrigid cyclic triple spaces , 2004, math/0410558.

[28]  I. Cheltsov Non-rationality of the 4-dimensional smooth complete intersection of a?quadric and a?quartic not containing planes , 2003 .

[29]  A. Pukhlikov Birationally rigid Fano varieties , 2003, math/0310267.

[30]  A. Pukhlikov Birationally rigid iterated Fano double covers , 2003, math/0310268.

[31]  L. Ein,et al.  Bounds for log canonical thresholds with applications to birational rigidity , 2002, math/0212211.

[32]  S. Donaldson Scalar Curvature and Stability of Toric Varieties , 2002 .

[33]  Aleksandr V. Pukhlikov,et al.  Birationally rigid Fano complete intersections , 2001 .

[34]  A. Pukhlikov Birationally rigid Fano double hypersurfaces , 2000 .

[35]  A. Pukhlikov Birational automorphisms of Fano hypersurfaces , 1998 .

[36]  G. Tian Kähler-Einstein metrics with positive scalar curvature , 1997 .

[37]  A. Pukhlikov Birational automorphisms of double spaces with singularities , 1997 .

[38]  J. Kollár Flips and Abundance for Algebraic Threefolds , 1992 .

[39]  G. Tian On Kähler-Einstein metrics on certain Kähler manifolds withC1 (M)>0 , 1987 .

[40]  V. A. Iskovskikh Birational automorphisms of three-dimensional algebraic varieties , 1980 .

[41]  David Mumford,et al.  Stability of projective varieties , 1977 .

[42]  Ju. Manin,et al.  THREE-DIMENSIONAL QUARTICS AND COUNTEREXAMPLES TO THE LÜROTH PROBLEM , 1971 .