Birational superrigidity and slope stability of Fano manifolds
暂无分享,去创建一个
[1] Chi Li. Yau-Tian-Donaldson correspondence for K-semistable Fano manifolds , 2013, 1302.6681.
[2] Kento Fujita. Towards a criterion for slope stability of Fano manifolds along divisors , 2013, 1301.4538.
[3] Luca Roversi,et al. Communication, and concurrency with logic-based restriction inside a calculus of structures , 2012, ArXiv.
[4] G. Tian. K‐Stability and Kähler‐Einstein Metrics , 2012, 1211.4669.
[5] S. Donaldson,et al. Kahler-Einstein metrics and stability , 2012, 1210.7494.
[6] Y. Odaka. On Parametrization, optimization and triviality of test configurations , 2012, 1201.0692.
[7] Xu Chen,et al. Special test configurations and $K$-stability of Fano varieties , 2011, 1111.5398.
[8] Kento Fujita. Fano manifolds which are not slope stable along curves , 2011, 1107.1362.
[9] Ji-Heon Park,et al. Slopes of smooth curves on Fano manifolds , 2010, 1005.4310.
[10] Y. Odaka,et al. Alpha invariant and K-stability of Q-Fano varieties , 2010, 1011.6131.
[11] Yongnam Lee,et al. Slope of smooth rational curves in a Fano manifold , 2010 .
[12] F. Jugeau. Hadron potentials within the gauge/string correspondence , 2008, 0812.4903.
[13] T. Mabuchi. A stronger concept of K-stability , 2009, 0910.4617.
[14] Y. Odaka. A generalization of the Ross--Thomas slope theory , 2009, 0910.1794.
[15] A. Pukhlikov. Birational Geometry of Algebraic Varieties with a Pencil of Fano Cyclic Covers , 2009 .
[16] T. Mabuchi. K-stability of constant scalar curvature polarization , 2008, 0812.4093.
[17] I. Cheltsov,et al. LOG CANONICAL THRESHOLDS OF SMOOTH FANO THREEFOLDS , 2008 .
[18] I. Cheltsov,et al. Log canonical thresholds of smooth Fano threefolds. With an appendix by Jean-Pierre Demailly , 2008, 0806.2107.
[19] J. Stoppa. K-stability of constant scalar curvature Kähler manifolds , 2008, 0803.4095.
[20] A. Pukhlikov. Birationally rigid varieties. I. Fano varieties , 2007 .
[21] James McKernan,et al. Existence of minimal models for varieties of log general type , 2006, 0808.1929.
[22] T. Fernex. Birationally rigid hypersurfaces , 2006, math/0604213.
[23] G. Tian,et al. Geometry of Kähler metrics and foliations by holomorphic discs , 2005, math/0507148.
[24] S. Donaldson. Lower bounds on the Calabi functional , 2005, math/0506501.
[25] Richard P. Thomas,et al. A study of the Hilbert-Mumford criterion for the stability of projective varieties , 2004, math/0412519.
[26] A. Pukhlikov. Birationally rigid Fano cyclic covers , 2004, math/0411198.
[27] I. Cheltsov. Birationally superrigid cyclic triple spaces , 2004, math/0410558.
[28] I. Cheltsov. Non-rationality of the 4-dimensional smooth complete intersection of a?quadric and a?quartic not containing planes , 2003 .
[29] A. Pukhlikov. Birationally rigid Fano varieties , 2003, math/0310267.
[30] A. Pukhlikov. Birationally rigid iterated Fano double covers , 2003, math/0310268.
[31] L. Ein,et al. Bounds for log canonical thresholds with applications to birational rigidity , 2002, math/0212211.
[32] S. Donaldson. Scalar Curvature and Stability of Toric Varieties , 2002 .
[33] Aleksandr V. Pukhlikov,et al. Birationally rigid Fano complete intersections , 2001 .
[34] A. Pukhlikov. Birationally rigid Fano double hypersurfaces , 2000 .
[35] A. Pukhlikov. Birational automorphisms of Fano hypersurfaces , 1998 .
[36] G. Tian. Kähler-Einstein metrics with positive scalar curvature , 1997 .
[37] A. Pukhlikov. Birational automorphisms of double spaces with singularities , 1997 .
[38] J. Kollár. Flips and Abundance for Algebraic Threefolds , 1992 .
[39] G. Tian. On Kähler-Einstein metrics on certain Kähler manifolds withC1 (M)>0 , 1987 .
[40] V. A. Iskovskikh. Birational automorphisms of three-dimensional algebraic varieties , 1980 .
[41] David Mumford,et al. Stability of projective varieties , 1977 .
[42] Ju. Manin,et al. THREE-DIMENSIONAL QUARTICS AND COUNTEREXAMPLES TO THE LÜROTH PROBLEM , 1971 .