Designable structural coloration by colloidal particle assembly: from nature to artificial manufacturing

Summary Structural color attracts considerable scientific interests and industrial explorations in various fields for the eco-friendly, fade-resistant, and dynamic advantages. After the long-period evolution, nature has achieved the optimized color structures at various length scales, which has inspired people to learn and replicate them to improve the artificial structure color. In this review, we focus on the design of artificial structural colors based on colloidal particle assembly and summarize the functional bioinspired structure colors. We demonstrate the design principles of biomimetic structural colors via the precise structure engineering and typical bottom-up methods. Some main applications are outlined in the following chapter. Finally, we propose the existing challenges and promising prospects. This review is expected to introduce the recent design strategies about the artificial structure colors and provide the insights for its future development.

[1]  Marco Lattuada,et al.  Bioinspired Stimuli‐Responsive Color‐Changing Systems , 2018, Advanced materials.

[2]  Howon Lee,et al.  Magnetochromatic microspheres: rotating photonic crystals. , 2009, Journal of the American Chemical Society.

[3]  Su Chen,et al.  Triphase microfluidic-directed self-assembly: anisotropic colloidal photonic crystal supraparticles and multicolor patterns made easy. , 2012, Angewandte Chemie.

[4]  Kyung Jin Park,et al.  Microfluidic Generation of Monodisperse and Photoreconfigurable Microspheres for Floral Iridescence–Inspired Structural Colorization , 2016, Advanced materials.

[5]  Wei Hong,et al.  Structural Color Materials for Optical Anticounterfeiting. , 2020, Small.

[6]  Howon Lee,et al.  SUPPLEMENTARY INFORMATION Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal , 2009 .

[7]  Jungyul Park,et al.  Multimodal and Covert–Overt Convertible Structural Coloration Transformed by Mechanical Stress , 2020, Advanced materials.

[8]  Min Jiang,et al.  Carbon dioxide capture and efficient fixation in a dynamic porous coordination polymer , 2019, Nature Communications.

[9]  Jun Yan,et al.  Corrigendum: Differential developmental requirement and peripheral regulation for dermal Vγ4 and Vγ6T17 cells in health and inflammation , 2016, Nature Communications.

[10]  S. Pancharatnam,et al.  Generalized theory of interference, and its applications , 1956 .

[11]  H. Nussenzveig High‐Frequency Scattering by a Transparent Sphere. I. Direct Reflection and Transmission , 1969 .

[12]  D. Kaplan,et al.  Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. , 2019, Chemical reviews.

[13]  Shuichi Kinoshita,et al.  Structural colors in nature: the role of regularity and irregularity in the structure. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  Lars Chittka,et al.  Floral Iridescence, Produced by Diffractive Optics, Acts As a Cue for Animal Pollinators , 2009, Science.

[15]  P. Midgley,et al.  Large-scale ordering of nanoparticles using viscoelastic shear processing , 2016, Nature Communications.

[16]  David L. Kaplan,et al.  Silk inverse opals , 2012, Nature Photonics.

[17]  R. Larson,et al.  Marangoni effect reverses coffee-ring depositions. , 2006, The journal of physical chemistry. B.

[18]  Yu Huang,et al.  Colloidal photonic crystals with narrow stopbands assembled from low-adhesive superhydrophobic substrates. , 2012, Journal of the American Chemical Society.

[19]  Kai Song,et al.  Instantaneous, Simple, and Reversible Revealing of Invisible Patterns Encrypted in Robust Hollow Sphere Colloidal Photonic Crystals , 2018, Advanced materials.

[20]  Qiang Yang,et al.  Patterned photonic crystals for hiding information , 2017 .

[21]  R. Roy,et al.  Frustrated total internal reflection: A demonstration and review , 1986 .

[22]  M. Goda Rapid integumental color changes due to novel iridophores in the chameleon sand tilefish Hoplolatilus chlupatyi , 2017, Pigment cell & melanoma research.

[23]  Ziyi Yu,et al.  Spherical colloidal photonic crystals with selected lattice plane exposure and enhanced color saturation for dynamic optical displays. , 2019, ACS applied materials & interfaces.

[24]  J. V. Sanders,et al.  Colour of Precious Opal , 1964, Nature.

[25]  J. Ge,et al.  Multicolor Printing Using Electric‐Field‐Responsive and Photocurable Photonic Crystals , 2017 .

[26]  Haifeng Yu,et al.  Athermal and Soft Multi‐Nanopatterning of Azopolymers: Phototunable Mechanical Properties , 2019 .

[27]  Zhongze Gu,et al.  Encoded Porous Beads for Label‐Free Multiplex Detection of Tumor Markers , 2009, Advanced materials.

[28]  Wei Ma,et al.  New Encryption Strategy of Photonic Crystals with Bilayer Inverse Heterostructure Guided from Transparency Response , 2019, Advanced Functional Materials.

[29]  Naibo Lin,et al.  Interplay between Light and Functionalized Silk Fibroin and Applications , 2020, iScience.

[30]  M. Engel,et al.  Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. , 2016, Chemical reviews.

[31]  Lei Jiang,et al.  Bio-inspired photonic crystal patterns , 2020 .

[32]  Chengang Ji,et al.  Engineering Light at the Nanoscale: Structural Color Filters and Broadband Perfect Absorbers , 2017 .

[33]  M. Milinkovitch,et al.  Photonic crystals cause active colour change in chameleons , 2015, Nature Communications.

[34]  Weihong Tan,et al.  Watching Silica Nanoparticles Glow in the Biological World , 2006 .

[35]  Yuhang Hu,et al.  Controllable Liquid-Liquid Printing with Defect-free, Corrosion-Resistance, Unrestricted Wetting Condition , 2019, iScience.

[36]  Yanlin Song,et al.  A General Layer‐by‐Layer Printing Method for Scalable High‐Resolution Full‐Color Flexible Luminescent Patterns , 2019, Advanced Optical Materials.

[37]  Yanlin Song,et al.  Controllable Printing Droplets for High‐Resolution Patterns , 2014, Advanced materials.

[38]  Ross C. McPhedran,et al.  The Dielectric Lamellar Diffraction Grating , 1981 .

[39]  Dengxin Ji,et al.  Iridescence-controlled and flexibly tunable retroreflective structural color film for smart displays , 2019, Science Advances.

[40]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[41]  Bor-Kai Hsiung,et al.  Rainbow peacock spiders inspire miniature super-iridescent optics , 2017, Nature Communications.

[42]  C. W. Mason,et al.  Structural Colors in Insects. II , 1926 .

[43]  Zhongze Gu,et al.  Bio-inspired variable structural color materials. , 2012, Chemical Society reviews.

[44]  Yadong Yin,et al.  Highly tunable superparamagnetic colloidal photonic crystals. , 2007, Angewandte Chemie.

[45]  Bharat Bhushan,et al.  Structural coloration in nature , 2013 .

[46]  Yu Wei,et al.  Highly Brilliant Noniridescent Structural Colors Enabled by Graphene Nanosheets Containing Graphene Quantum Dots , 2018, Advanced Functional Materials.

[47]  Nicolas Vogel,et al.  Advances in colloidal assembly: the design of structure and hierarchy in two and three dimensions. , 2015, Chemical reviews.

[48]  Z. Gu,et al.  Colloidal crystal beads as supports for biomolecular screening. , 2006, Angewandte Chemie.

[49]  Hiroshi Fudouzi,et al.  Tunable structural color in organisms and photonic materials for design of bioinspired materials , 2011, Science and technology of advanced materials.

[50]  Jintao Zhu,et al.  Metallosupramolecular Photonic Elastomers with Self‐Healing Capability and Angle‐Independent Color , 2018, Advanced materials.

[51]  Lauren D. Zarzar,et al.  Tunable and Responsive Structural Color from Polymeric Microstructured Surfaces Enabled by Interference of Totally Internally Reflected Light , 2020 .

[52]  Yanlin Song,et al.  Formation of Multicomponent Size-Sorted Assembly Patterns by Tunable Templated Dewetting. , 2018, Angewandte Chemie.

[53]  Lei Shi,et al.  Amorphous Photonic Crystals with Only Short‐Range Order , 2013, Advanced materials.

[54]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[55]  L. Ilharco,et al.  The sol-gel route to advanced silica-based materials and recent applications. , 2013, Chemical reviews.

[56]  Olimpia D. Onelli,et al.  Bio‐inspired Highly Scattering Networks via Polymer Phase Separation , 2018 .

[57]  Yadong Yin,et al.  Responsive photonic crystals. , 2011, Angewandte Chemie.

[58]  J. Aizenberg,et al.  Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna , 2014, Proceedings of the National Academy of Sciences.

[59]  G. Fecher,et al.  Multiple Dirac cones at the surface of the topological metal LaBi , 2016, Nature Communications.

[60]  Yuanjin Zhao,et al.  Anisotropic structural color particles from colloidal phase separation , 2020, Science Advances.

[61]  H. Möhwald,et al.  Large‐Scale Noniridescent Structural Color Printing Enabled by Infiltration‐Driven Nonequilibrium Colloidal Assembly , 2018, Advanced materials.

[62]  Luoran Shang,et al.  Bioinspired living structural color hydrogels , 2018, Science Robotics.

[63]  Joel K. W. Yang,et al.  Nanophotonic Structural Colors , 2020 .

[64]  Ming Xiao,et al.  Bioinspired bright noniridescent photonic melanin supraballs , 2017, Science Advances.

[65]  Peter Vukusic,et al.  Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies , 2007, Proceedings of the Royal Society B: Biological Sciences.

[66]  Cefe López,et al.  Materials Aspects of Photonic Crystals , 2003 .

[67]  Takayuki Hoshino,et al.  Brilliant Blue Observation from a Morpho-Butterfly-Scale Quasi-Structure , 2004 .

[68]  Yanlin Song,et al.  Inkjet printing wearable electronic devices , 2017 .

[69]  Henry I. Smith,et al.  Photonic-bandgap microcavities in optical waveguides , 1997, Nature.

[70]  Bao-Lian Su,et al.  Hierarchically porous materials: synthesis strategies and structure design. , 2017, Chemical Society reviews.

[71]  Cai‐Feng Wang,et al.  Large-scale colloidal films with robust structural colors , 2019, Materials Horizons.

[72]  O. Wolfbeis,et al.  Photonic crystals for chemical sensing and biosensing. , 2014, Angewandte Chemie.

[73]  Hui Wang,et al.  Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors , 2013, Sensors.

[74]  Lei Shi,et al.  Janus Structural Color from a 2D Photonic Crystal Hybrid with a Fabry–Perot Cavity , 2018, Advanced Optical Materials.

[75]  Joseph M Slocik,et al.  Bio-Optics and Bio-Inspired Optical Materials. , 2017, Chemical reviews.

[76]  A. Kristensen,et al.  Plasmonic Colors: Toward Mass Production of Metasurfaces , 2016 .

[77]  A. T. Young Rayleigh scattering. , 1981, Applied optics.

[78]  G. Yi,et al.  Colloidal diamond , 2020, Nature.

[79]  M. Shawkey,et al.  Bio-Inspired Structural Colors Produced via Self-Assembly of Synthetic Melanin Nanoparticles. , 2015, ACS nano.

[80]  Yanlin Song,et al.  Printing Patterned Fine 3D Structures by Manipulating the Three Phase Contact Line , 2015 .

[81]  D. McAdams,et al.  Nano/Micro‐Manufacturing of Bioinspired Materials: a Review of Methods to Mimic Natural Structures , 2016, Advanced materials.

[82]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[83]  木下 修一,et al.  Structural colors in the realm of nature , 2008 .

[84]  M. Brongersma,et al.  Metasurface-driven OLED displays beyond 10,000 pixels per inch , 2020, Science.

[85]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[86]  J. Zi,et al.  Coloration strategies in peacock feathers , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Mingzhu Li,et al.  Patterned Colloidal Photonic Crystals. , 2018, Angewandte Chemie.

[88]  Laura Maggini,et al.  Synthetic strategies tailoring colours in multichromophoric organic nanostructures. , 2020, Chemical Society reviews.

[89]  H. Hölscher,et al.  Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers , 2017, Science Advances.

[90]  Nicolas Vogel,et al.  Bioinspired Photonic Pigments from Colloidal Self‐Assembly , 2018, Advanced materials.

[91]  Lei Jiang,et al.  Bio-inspired design of multiscale structures for function integration , 2011 .

[92]  Zhongze Gu,et al.  Spherical colloidal photonic crystals. , 2014, Accounts of chemical research.

[93]  Joanna Aizenberg,et al.  Assembly of large-area, highly ordered, crack-free inverse opal films , 2010, Proceedings of the National Academy of Sciences.

[94]  Zuocheng Zhou,et al.  Opal and inverse opal fabricated with a flow-controlled vertical deposition method. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[95]  Baoping Wang,et al.  Bioinspired multifunctional Janus particles for droplet manipulation. , 2013, Journal of the American Chemical Society.

[96]  J. Baumberg,et al.  Mimicking the colourful wing scale structure of the Papilio blumei butterfly. , 2010, Nature nanotechnology.

[97]  Olimpia D. Onelli,et al.  Evolutionary‐Optimized Photonic Network Structure in White Beetle Wing Scales , 2018, Advanced materials.

[98]  inkjet printing , 2020, Catalysis from A to Z.

[99]  Jun Hyuk Moon,et al.  Chemical aspects of three-dimensional photonic crystals. , 2010, Chemical reviews.

[100]  Lei Jiang,et al.  Colorful humidity sensitive photonic crystal hydrogel , 2008 .

[101]  I. Sokolov,et al.  Absence of Anderson localization of light in a random ensemble of point scatterers. , 2013, Physical review letters.

[102]  Junsuk Rho,et al.  Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications , 2018, Nano Convergence.

[103]  J. Aizenberg,et al.  Bio-Inspired Band-Gap Tunable Elastic Optical Multilayer Fibers , 2013, Advanced materials.

[104]  D. McComb,et al.  Observation of Bragg reflection in photonic crystals synthesized from air spheres in a titania matrix , 2000 .

[105]  Andreas Stein,et al.  Tunable Colors in Opals and Inverse Opal Photonic Crystals , 2010 .

[106]  P. Nordlander,et al.  Plasmonic colour generation , 2017 .

[107]  Joel K. W. Yang,et al.  Structural color three-dimensional printing by shrinking photonic crystals , 2019, Nature Communications.

[108]  K. Suh,et al.  25th Anniversary Article: Scalable Multiscale Patterned Structures Inspired by Nature: the Role of Hierarchy , 2014, Advanced materials.

[109]  A. Hart,et al.  Direct‐Write Freeform Colloidal Assembly , 2018, Advanced materials.

[110]  J. Aizenberg,et al.  Nanocrystalline Precursors for the Co‐Assembly of Crack‐Free Metal Oxide Inverse Opals , 2018, Advanced materials.

[111]  Lauren D. Zarzar,et al.  Colouration by total internal reflection and interference at microscale concave interfaces , 2019, Nature.

[112]  Joanna Aizenberg,et al.  Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies , 2015, Proceedings of the National Academy of Sciences.

[113]  Teresa J. Feo,et al.  Structural absorption by barbule microstructures of super black bird of paradise feathers , 2018, Nature Communications.

[114]  Dogyeong Ha,et al.  Inkjet Printing Based Mono-layered Photonic Crystal Patterning for Anti-counterfeiting Structural Colors , 2016, Scientific Reports.

[115]  Shu Yang,et al.  A Robust Smart Window: Reversibly Switching from High Transparency to Angle‐Independent Structural Color Display , 2015, Advanced materials.

[116]  Hui Cao,et al.  Self-assembly of amorphous biophotonic nanostructures by phase separation , 2009 .

[117]  Weixia Zhang,et al.  Bio-inspired intelligent structural color materials , 2019, Materials Horizons.

[118]  E. Loewen,et al.  Diffraction Gratings and Applications , 2018 .

[119]  Antonios G Mikos,et al.  Biomimetic materials for tissue engineering. , 2003, Biomaterials.

[120]  Xintao Lai,et al.  Recent advantages of colloidal photonic crystals and their applications for luminescence enhancement , 2019, Materials Today Nano.

[121]  A. Crosby,et al.  Flower Inspiration: Broad‐Angle Structural Color through Tunable Hierarchical Wrinkles in Thin Film Multilayers , 2020, Advanced Functional Materials.

[122]  Jingxia Wang,et al.  Inkjet Printing Patterned Photonic Crystal Domes for Wide Viewing‐Angle Displays by Controlling the Sliding Three Phase Contact Line , 2014 .

[123]  Xin Wang,et al.  Magnetic assembly and field-tuning of ellipsoidal-nanoparticle-based colloidal photonic crystals. , 2015, Angewandte Chemie.

[124]  Xuemin Du,et al.  Chameleon-Inspired Structural-Color Actuators , 2019, Matter.

[125]  F. Omenetto,et al.  Inkjet Printing of Patterned, Multispectral, and Biocompatible Photonic Crystals , 2019, Advanced materials.

[126]  J. M. Rowe,et al.  Coherent- and Incoherent-Scattering Laws of Liquid Argon , 1972 .