Dielectric, mechanical and thermal properties of ZrO2–TiO2 materials obtained by microwave sintering at low temperature
暂无分享,去创建一个
[1] Ranulfo Benedito de Paula Miranda,et al. Effect of titania addition and sintering temperature on the microstructure, optical, mechanical and biological properties of the Y-TZP/TiO2 composite. , 2020, Dental materials : official publication of the Academy of Dental Materials.
[2] A. Borrell,et al. Advanced Ceramic Materials Sintered by Microwave Technology , 2018, Sintering Technology - Method and Application.
[3] P. Plaza-González,et al. In Situ Monitoring of Microwave Processing of Materials at High Temperatures through Dielectric Properties Measurement , 2016, Materials.
[4] Apurbba Kumar Sharma,et al. Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing , 2016 .
[5] Xiaobo Chen,et al. TiO2 Nanomaterials as Anode Materials for Lithium‐Ion Rechargeable Batteries , 2015 .
[6] M. D. Salvador,et al. Propiedades mecánicas y coeficiente de dilatación térmica de la ß-eucriptita sinterizada por la técnica de microondas , 2014 .
[7] A. Borrell,et al. Microwave Technique: A Powerful Tool for Sintering Ceramic Materials , 2014 .
[8] A. Borrell,et al. Microwave Sintering of Zirconia Materials: Mechanical and Microstructural Properties , 2013 .
[9] M. T. Colomer,et al. Electrophoretic deposition of TiO2/Er3+ nanoparticulate sols. , 2013, The journal of physical chemistry. B.
[10] B. Basu,et al. Advanced Structural Ceramics , 2011 .
[11] I. Santacruz,et al. Dispersion of TiO2 nanopowders to obtain homogeneous nanostructured granules by spray-drying , 2011 .
[12] C. Baudín,et al. Phase evolution in reaction sintered zirconium titanate based materials , 2010 .
[13] C. Baudín,et al. Thermal expansion of zirconia―zirconium titanate materials obtained by slip casting of mixtures of Y-TZP―TiO2 , 2009 .
[14] C. Baudín,et al. Synthesis of Zirconium Titanate‐Based Materials by Colloidal Filtration and Reaction Sintering , 2008 .
[15] I. Denry,et al. Stabilized zirconia as a structural ceramic: an overview. , 2008, Dental materials : official publication of the Academy of Dental Materials.
[16] K. Kawano,et al. Stabilization of anatase phase in the rare earth; Eu and Sm ion doped nanoparticle TiO2 , 2008 .
[17] Xiaobo Chen,et al. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.
[18] C. Grey,et al. Phase evolution in the YO1.5–TiO2–ZrO2 system around the pyrochlore region , 2005 .
[19] Neil A. Rowson,et al. Dielectric properties of coal , 2001 .
[20] A. K. Suri,et al. Microwave sintering of zirconia ceramics , 2001 .
[21] A. Goldstein,et al. Direct microwave sintering of yttria-stabilized zirconia at 2·45 GHz , 1999 .
[22] O. Lev,et al. Photocatalytic oxidation of 2,4-dichlorophenoxyacetic acid with titania photocatalyst. Comparison of supported and suspended TiO2 , 1998 .
[23] P. Shen,et al. The effects of TiO2 addition on the microstructure and transformation of ZrO2 with 3 and 6 mol.% Y2O3 , 1990 .
[24] N. Suh,et al. Negative thermal expansion ceramics: A review , 1987 .
[25] K. Świerczek,et al. Anisotropy of thermal expansion of 3Y-TZP, α-Al 2 O 3 and composites from 3Y-TZP/α-Al 2 O 3 system , 2018 .
[26] R. Moreno,et al. ZrTiO4 materials obtained by Spark Plasma Reaction Sintering , 2014 .
[27] A. Borrell,et al. Fabrication of near-zero thermal expansion of fully dense β-eucryptite ceramics by microwave sintering , 2014 .
[28] R. Freer,et al. Microstructural engineering of microwave dielectric ceramics , 2008 .
[29] Pichet Limsuwan,et al. Phase Characterization of TiO2 Powder by XRD and TEM , 2008 .
[30] G. Cao,et al. Low thermal expansion behavior and thermal durability of ZrTiO4–Al2TiO5–Fe2O3 ceramics between 750 and 1400 °C , 2002 .