Dielectric, mechanical and thermal properties of ZrO2–TiO2 materials obtained by microwave sintering at low temperature

[1]  Ranulfo Benedito de Paula Miranda,et al.  Effect of titania addition and sintering temperature on the microstructure, optical, mechanical and biological properties of the Y-TZP/TiO2 composite. , 2020, Dental materials : official publication of the Academy of Dental Materials.

[2]  A. Borrell,et al.  Advanced Ceramic Materials Sintered by Microwave Technology , 2018, Sintering Technology - Method and Application.

[3]  P. Plaza-González,et al.  In Situ Monitoring of Microwave Processing of Materials at High Temperatures through Dielectric Properties Measurement , 2016, Materials.

[4]  Apurbba Kumar Sharma,et al.  Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing , 2016 .

[5]  Xiaobo Chen,et al.  TiO2 Nanomaterials as Anode Materials for Lithium‐Ion Rechargeable Batteries , 2015 .

[6]  M. D. Salvador,et al.  Propiedades mecánicas y coeficiente de dilatación térmica de la ß-eucriptita sinterizada por la técnica de microondas , 2014 .

[7]  A. Borrell,et al.  Microwave Technique: A Powerful Tool for Sintering Ceramic Materials , 2014 .

[8]  A. Borrell,et al.  Microwave Sintering of Zirconia Materials: Mechanical and Microstructural Properties , 2013 .

[9]  M. T. Colomer,et al.  Electrophoretic deposition of TiO2/Er3+ nanoparticulate sols. , 2013, The journal of physical chemistry. B.

[10]  B. Basu,et al.  Advanced Structural Ceramics , 2011 .

[11]  I. Santacruz,et al.  Dispersion of TiO2 nanopowders to obtain homogeneous nanostructured granules by spray-drying , 2011 .

[12]  C. Baudín,et al.  Phase evolution in reaction sintered zirconium titanate based materials , 2010 .

[13]  C. Baudín,et al.  Thermal expansion of zirconia―zirconium titanate materials obtained by slip casting of mixtures of Y-TZP―TiO2 , 2009 .

[14]  C. Baudín,et al.  Synthesis of Zirconium Titanate‐Based Materials by Colloidal Filtration and Reaction Sintering , 2008 .

[15]  I. Denry,et al.  Stabilized zirconia as a structural ceramic: an overview. , 2008, Dental materials : official publication of the Academy of Dental Materials.

[16]  K. Kawano,et al.  Stabilization of anatase phase in the rare earth; Eu and Sm ion doped nanoparticle TiO2 , 2008 .

[17]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[18]  C. Grey,et al.  Phase evolution in the YO1.5–TiO2–ZrO2 system around the pyrochlore region , 2005 .

[19]  Neil A. Rowson,et al.  Dielectric properties of coal , 2001 .

[20]  A. K. Suri,et al.  Microwave sintering of zirconia ceramics , 2001 .

[21]  A. Goldstein,et al.  Direct microwave sintering of yttria-stabilized zirconia at 2·45 GHz , 1999 .

[22]  O. Lev,et al.  Photocatalytic oxidation of 2,4-dichlorophenoxyacetic acid with titania photocatalyst. Comparison of supported and suspended TiO2 , 1998 .

[23]  P. Shen,et al.  The effects of TiO2 addition on the microstructure and transformation of ZrO2 with 3 and 6 mol.% Y2O3 , 1990 .

[24]  N. Suh,et al.  Negative thermal expansion ceramics: A review , 1987 .

[25]  K. Świerczek,et al.  Anisotropy of thermal expansion of 3Y-TZP, α-Al 2 O 3 and composites from 3Y-TZP/α-Al 2 O 3 system , 2018 .

[26]  R. Moreno,et al.  ZrTiO4 materials obtained by Spark Plasma Reaction Sintering , 2014 .

[27]  A. Borrell,et al.  Fabrication of near-zero thermal expansion of fully dense β-eucryptite ceramics by microwave sintering , 2014 .

[28]  R. Freer,et al.  Microstructural engineering of microwave dielectric ceramics , 2008 .

[29]  Pichet Limsuwan,et al.  Phase Characterization of TiO2 Powder by XRD and TEM , 2008 .

[30]  G. Cao,et al.  Low thermal expansion behavior and thermal durability of ZrTiO4–Al2TiO5–Fe2O3 ceramics between 750 and 1400 °C , 2002 .