On well-posedness and small data global existence for an interface damped free boundary fluid–structure model

We address a fluid?structure system which consists of the incompressible Navier?Stokes equations and a damped linear wave equation defined on two dynamic domains. The equations are coupled through transmission boundary conditions and additional boundary stabilization effects imposed on the free moving interface separating the two domains. Given sufficiently small initial data, we prove the global-in-time existence of solutions by establishing a key energy inequality which in addition provides exponential decay of solutions.

[1]  Irena Lasiecka,et al.  Sharp Regularity Theory for Elastic and Thermoelastic Kirchoff Equations with Free Boundary Conditions , 2000 .

[2]  S. Shkoller,et al.  The Interaction between Quasilinear Elastodynamics and the , 2006 .

[3]  Irena Lasiecka,et al.  Higher Regularity of a Coupled Parabolic-Hyperbolic Fluid-Structure Interactive System , 2008 .

[4]  Amjad Tuffaha,et al.  Smoothness of weak solutions to a nonlinear fluid-structure interaction model , 2008 .

[5]  Daniel Coutand,et al.  The Interaction between Quasilinear Elastodynamics and the Navier-Stokes Equations , 2006 .

[6]  Daniel Coutand,et al.  Motion of an Elastic Solid inside an Incompressible Viscous Fluid , 2005 .

[7]  Semigroup Generation and ``hidden" Trace Regularity of a Dynamic Plate with Non-Monotone Boundary Feedbacks , 2010 .

[8]  M. Boulakia,et al.  A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations , 2009 .

[9]  G. Simonett,et al.  ON THE TWO-PHASE NAVIER-STOKES EQUATIONS WITH SURFACE TENSION , 2009, 0908.3327.

[10]  I. Kukavica,et al.  Solutions to a free boundary problem of fluid-structure interaction , 2012 .

[11]  Gerd Grubb,et al.  Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods. , 1991 .

[12]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[13]  R. Triggiani,et al.  Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions , 1992 .

[14]  L. Hou,et al.  ANALYSIS OF A LINEAR FLUID-STRUCTURE INTERACTION PROBLEM , 2003 .

[15]  Igor Kukavica,et al.  Strong solutions to a Navier–Stokes–Lamé system on a domain with a non-flat boundary , 2010 .

[16]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[17]  M. Boulakia,et al.  Regular solutions of a problem coupling a compressible fluid and an elastic structure , 2010 .

[18]  J. Lions,et al.  Non homogeneous boundary value problems for second order hyperbolic operators , 1986 .

[19]  Igor Kukavica,et al.  Well-posedness for the compressible Navier–Stokes–Lamé system with a free interface , 2012 .

[20]  Irena Lasiecka,et al.  Optimal boundary control with critical penalization for a PDE model of fluid–solid interactions , 2009 .

[21]  Igor Kukavica,et al.  Strong solutions to a nonlinear fluid structure interaction system , 2009 .

[22]  Irena Lasiecka,et al.  Asymptotic stability of finite energy in Navier Stokes-elastic wave interaction , 2011 .

[23]  I. Kukavica,et al.  Regularity of Solutions to a Free Boundary Problem of Fluid Structure Interaction , 2013 .

[24]  Roland Glowinski,et al.  Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow , 2009, J. Comput. Phys..

[25]  Irena Lasiecka,et al.  Riccati theory and singular estimates for a Bolza control problem arising in linearized fluid-structure interaction , 2009, Syst. Control. Lett..

[26]  J. Marsden,et al.  Classical elastodynamics as a linear symmetric hyperbolic system , 1978 .

[27]  Irena Lasiecka,et al.  Interface feedback control stabilization of a nonlinear fluid–structure interaction , 2012 .

[28]  Igor Kukavica,et al.  SOLUTIONS TO A FLUID-STRUCTURE INTERACTION FREE BOUNDARY PROBLEM , 2011 .

[29]  R. Triggiani,et al.  Uniform stabilization of the wave equation with dirichlet-feedback control without geometrical conditions , 1992 .

[30]  Roberto Triggiani,et al.  Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability , 2013 .

[31]  Igor Kukavica,et al.  On well-posedness for a free boundary fluid-structure model , 2012 .

[32]  Roland Glowinski,et al.  A kinematically coupled time-splitting scheme for fluid-structure interaction in blood flow , 2009, Appl. Math. Lett..

[33]  Igor Kukavica,et al.  Strong solutions for a fluid structure interaction system , 2010, Advances in Differential Equations.

[34]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[35]  Enrique Zuazua,et al.  Long-Time Behavior of a Coupled Heat-Wave System Arising in Fluid-Structure Interaction , 2007 .

[36]  M. Boulakia Existence of Weak Solutions for the Three-Dimensional Motion of an Elastic Structure in an Incompressible Fluid , 2007 .