Planarization of Graphs Embedded on Surfaces

A planarizing set of a graph is a set of edges or vertices whose removal leaves a planar graph. It is shown that, if G is an n-vertex graph of maximum degree d and orientable genus g, then there exists a planarizing set of O(√dgn) edges. This result is tight within a constant factor. Similar results are obtained for planarizing vertex sets and for graphs embedded on nonorientable surfaces. Planarizing edge and vertex sets can be found in O(n+g) time, if an embedding of G on a surface of genus g is given. We also construct an approximation algorithm that finds an O(√gn log g) planarizing vertex set of G in O(n log g) time if no genus-g embedding is given as an input.

[1]  Robert E. Tarjan,et al.  An O(m log n)-Time Algorithm for the Maximal Planar Subgraph Problem , 1992, SIAM J. Comput..

[2]  M.N.S. Swamy,et al.  O(n2) algorithms for graph planarization , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  Han La Poutré,et al.  Alpha-algorithms for incremental planarity testing (preliminary version) , 1994, STOC '94.

[4]  Krzysztof Diks,et al.  Edge Separators for Planar Graphs and Their Applications , 1988, MFCS.

[5]  Carsten Thomassen,et al.  The Graph Genus Problem is NP-Complete , 1989, J. Algorithms.

[6]  F. Harary,et al.  Additivity of the genus of a graph , 1962 .

[7]  Frank Harary,et al.  Graph Theory , 2016 .

[8]  P. Giblin,et al.  Graphs, surfaces, and homology : an introduction to algebraic topology , 1977 .

[9]  Krzysztof Diks,et al.  Edge Separators of Planar and Outerplanar Graphs with Applications , 1993, J. Algorithms.

[10]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[11]  M. N. Shanmukha Swamy,et al.  O(n²) Algorithms for Graph Planarization , 1988, WG.

[12]  Narsingh Deo,et al.  Node-Deletion NP-Complete Problems , 1979, SIAM J. Comput..

[13]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[14]  Hristo Djidjev A Linear Algorithm for the Maximal Planar Subgraph Problem , 1995, WADS.

[15]  G. Miller,et al.  On deleting vertices to make a graph of positive genus planar , 1987 .

[16]  John R Gilbert,et al.  A Separator Theorem for Graphs of Bounded Genus , 1984, J. Algorithms.

[17]  Shankar M. Venkatesan Improved Constants for Some Separator Theorems , 1987, J. Algorithms.

[18]  Ondrej Sýkora,et al.  Edge Separators for Graphs of Bounded Genus with Applications , 1993, Theor. Comput. Sci..

[19]  Takao Nishizeki,et al.  Planar Graphs: Theory and Algorithms , 1988 .

[20]  Gary L. Miller,et al.  Finding Small Simple Cycle Separators for 2-Connected Planar Graphs , 1986, J. Comput. Syst. Sci..

[21]  Hristo Djidjev,et al.  An efficient algorithm for the genus problem with explicit construction of forbidden subgraphs , 1991, STOC '91.

[22]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[23]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[24]  La Poutre,et al.  Alpha-algorithms for incremental planarity testing , 1994 .