Strong light–matter interaction in ZnO microcavities

The strong light–matter interaction in ZnO-embedded microcavities has received great attention in recent years, due to its ability to generate the robust bosonic quasiparticles, exciton-polaritons, at or above room temperature. This review introduces the strong coupling effect in ZnO-based microcavities and describes the recent progress in this field. In addition, the report contains a systematic analysis of the room-temperature strong-coupling effects from relaxation to polariton lasing. The stable room temperature operation of polaritonic effects in a ZnO microcavity promises a wide range of practical applications in the future, such as ultra-low power consumption coherent light emitters in the ultraviolet region, polaritonic transport, and other fundamental of quantum optics in solid-state systems. This Review discusses phenomena arising from the strong coupling between light and matter inside zinc oxide microcavities. Ying-Yu Lai and colleagues from National Chiao Tung University in Hsinchu describe the ability for such structures to support polariton effects at room temperature, owing to the large oscillator strength and exciton binding energy of zinc oxide. In particular, they discuss the substantial progress that has been made in achieving polariton lasing at temperatures as high as 353 K. They also describe methods for fabricating such microcavities, together with the polariton relaxation and bottleneck processes that can occur. The authors suggest that further improvements in the cavities should be possible by improving the epitaxial quality of the zinc oxide layer and surrounding distributed Bragg reflectors, which are used to confine the light.

[1]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[2]  M. Grundmann,et al.  Ballistic propagation of exciton–polariton condensates in a ZnO-based microcavity , 2012 .

[3]  Robin K. Huang,et al.  Exciton-polariton lasing and amplification based on exciton-exciton scattering in CdTe microcavity quantum wells , 2002 .

[4]  Pierre Lefebvre,et al.  Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells. , 1998 .

[5]  R. Agarwal,et al.  One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires , 2011, Proceedings of the National Academy of Sciences.

[6]  Yasuhiko Arakawa,et al.  Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot , 2011 .

[7]  J. Bloch,et al.  High-temperature ultrafast polariton parametric amplification in semiconductor microcavities , 2001, Nature.

[8]  Benoit Deveaud-Plédran,et al.  Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid , 2011 .

[9]  Heinz Kalt,et al.  65 years of ZnO research – old and very recent results , 2010 .

[10]  M. Grundmann,et al.  Observation of strong exciton–photon coupling at temperatures up to 410 K , 2009 .

[11]  T. Lu,et al.  Broadening of upper polariton branch in GaAs, GaN, and ZnO semiconductor microcavities , 2011 .

[12]  H. Kuo,et al.  Crack-free GaN∕AlN distributed Bragg reflectors incorporated with GaN∕AlN superlattices grown by metalorganic chemical vapor deposition , 2006 .

[13]  Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity. , 2012, Optics express.

[14]  Isabelle Sagnes,et al.  Polariton parametric oscillation in a single micropillar cavity , 2010 .

[15]  Eric Feltin,et al.  Room temperature polariton lasing in a GaN∕AlGaN multiple quantum well microcavity , 2008 .

[16]  P. Lefebvre,et al.  Comparison of strong coupling regimes in bulk GaAs, GaN and ZnO semiconductor microcavities , 2008, 0810.1811.

[17]  I. Carusotto,et al.  Superfluidity of polaritons in semiconductor microcavities , 2009 .

[18]  A. Kavokin,et al.  Observation of Half-Quantum Vortices in an Exciton-Polariton Condensate , 2009, Science.

[19]  Gregor Weihs,et al.  Condensation of Semiconductor Microcavity Exciton Polaritons , 2002, Science.

[20]  Xiao Wei Sun,et al.  Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities , 2011 .

[21]  H. Gerritsen,et al.  Exciton polaritons confined in a ZnO nanowire cavity. , 2006, Physical review letters.

[22]  Pallab Bhattacharya,et al.  Room temperature ultralow threshold GaN nanowire polariton laser. , 2011, Physical review letters.

[23]  P. Bhattacharya,et al.  Room Temperature Strong Coupling Effects from Single Zno Nanowire Microcavity References and Links , 2022 .

[24]  M. S. Skolnick,et al.  Persistent currents and quantized vortices in a polariton superfluid , 2009, 0907.2371.

[25]  I. Shelykh,et al.  Optical circuits based on polariton neurons in semiconductor microcavities. , 2008, Physical review letters.

[26]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[27]  J. Hopfield a Quantum-Mechanical Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. , 1958 .

[28]  Nikolay A. Gippius,et al.  One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature , 2009 .

[29]  Y. Lan,et al.  High-Temperature Polariton Lasing in a Strongly Coupled ZnO Microcavity , 2012 .

[30]  M. S. Skolnick,et al.  Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation , 2000 .

[31]  J. Baumberg,et al.  Spontaneous polarization buildup in a room-temperature polariton laser. , 2008, Physical review letters.

[32]  K. West,et al.  Bose-Einstein Condensation of Microcavity Polaritons in a Trap , 2007, Science.

[33]  A. Lemaître,et al.  Parametric oscillation in vertical triple microcavities , 2006, Nature.

[34]  P. Lagoudakis,et al.  Room-temperature polariton lasing in semiconductor microcavities. , 2007, Physical review letters.

[35]  H. Wünsche,et al.  Strong exciton-photon coupling in a monolithic ZnO/(Zn,Mg)O multiple quantum well microcavity , 2011 .

[36]  Gregor Weihs,et al.  Polariton lasing vs. photon lasing in a semiconductor microcavity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Sophie Bouchoule,et al.  Polariton lasing in a hybrid bulk ZnO microcavity , 2011 .

[38]  Ultra-low threshold polariton lasing in photonic crystal cavities , 2011, 1108.4948.

[39]  Y. Ota,et al.  Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system , 2009, 0905.3063.

[40]  M. Wouters,et al.  Quantized vortices in an exciton–polariton condensate , 2008 .

[41]  Single vortex-antivortex pair in an exciton-polariton condensate , 2009, 1005.1897.

[42]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[43]  Tien-Chang Lu,et al.  Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature , 2009 .

[44]  H. Morkoç,et al.  Cavity polaritons in ZnO-based hybrid microcavities , 2008 .

[45]  H. Morkoç,et al.  Characteristics of Exciton-polaritons in Zno- Based Hybrid Microcavities , 2022 .