Adaptive lifting for nonparametric regression

Many wavelet shrinkage methods assume that the data are observed on an equally spaced grid of length of the form 2J for some J. These methods require serious modification or preprocessed data to cope with irregularly spaced data. The lifting scheme is a recent mathematical innovation that obtains a multiscale analysis for irregularly spaced data.A key lifting component is the “predict” step where a prediction of a data point is made. The residual from the prediction is stored and can be thought of as a wavelet coefficient. This article exploits the flexibility of lifting by adaptively choosing the kind of prediction according to a criterion. In this way the smoothness of the underlying ‘wavelet’ can be adapted to the local properties of the function. Multiple observations at a point can readily be handled by lifting through a suitable choice of prediction. We adapt existing shrinkage rules to work with our adaptive lifting methods.We use simulation to demonstrate the improved sparsity of our techniques and improved regression performance when compared to both wavelet and non-wavelet methods suitable for irregular data. We also exhibit the benefits of our adaptive lifting on the real inductance plethysmography and motorcycle data.

[1]  Michael G. Strintzis,et al.  Lossless image compression based on optimal prediction, adaptive lifting, and conditional arithmetic coding , 2001, IEEE Trans. Image Process..

[2]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[3]  Nouna Kettaneh,et al.  Statistical Modeling by Wavelets , 1999, Technometrics.

[4]  Richard G. Baraniuk,et al.  Nonlinear wavelet transforms for image coding via lifting , 2003, IEEE Trans. Image Process..

[5]  Michael R. Chernick,et al.  Wavelet Methods for Time Series Analysis , 2001, Technometrics.

[6]  Bernard W. Silverman,et al.  EbayesThresh: R and S-Plus programs for Empirical Bayes thresholding , 2005 .

[7]  Michael Unser,et al.  Wavelet applications in signal and image processing VII : 19-23 July 1999, Denver, Colorado , 1999 .

[8]  Robert D. Nowak,et al.  Adaptive wavelet transforms via lifting , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[9]  G. Nason,et al.  Real nonparametric regression using complex wavelets , 2004 .

[10]  Bernard W. Silverman,et al.  Scattered data smoothing by empirical Bayesian shrinkage of second-generation wavelet coefficients , 2001, SPIE Optics + Photonics.

[11]  Donald B. Percival,et al.  Wavelet shrinkage for unequally spaced data , 1999, Stat. Comput..

[12]  Richard G. Baraniuk,et al.  Adaptive wavelet transforms for image coding using lifting , 1998, Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225).

[13]  I. Johnstone,et al.  Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences , 2004, math/0410088.

[14]  Brani Vidakovic,et al.  On Non-Equally Spaced Wavelet Regression , 2001 .

[15]  Guy P. Nason,et al.  Stopping time in adaptive lifting , 2005 .

[16]  Arne Kovac,et al.  Extending the Scope of Wavelet Regression Methods by Coefficient-Dependent Thresholding , 2000 .

[17]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[18]  T. Tony Cai,et al.  WAVELET SHRINKAGE FOR NONEQUISPACED SAMPLES , 1998 .

[19]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[20]  T. Sapatinas,et al.  Wavelet Analysis and its Statistical Applications , 2000 .

[21]  Guy P. Nason Choice of wavelet smoothness, primary resolution and threshold in wavelet shrinkage , 2002, Stat. Comput..

[22]  Guohua Pan,et al.  Local Regression and Likelihood , 1999, Technometrics.

[23]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  T. Tony Cai,et al.  Wavelet estimation for samples with random uniform design , 1999 .

[25]  Bernard W. Silverman,et al.  The discrete wavelet transform in S , 1994 .

[26]  Jianqing Fan,et al.  Regularization of Wavelet Approximations , 2001 .

[27]  Adhemar Bultheel,et al.  Stabilised wavelet transforms for non-equispaced data smoothing , 2002, Signal Process..

[28]  I. Johnstone,et al.  Empirical Bayes selection of wavelet thresholds , 2005, math/0508281.

[29]  G. Nason Wavelet Shrinkage using Cross-validation , 1996 .

[30]  Arne Kovac,et al.  Wavelet thresholding for unequally time-spaced data , 1999 .

[31]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[32]  W. Sweldens Wavelets and the lifting scheme : A 5 minute tour , 1996 .

[33]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[34]  M. Wand Local Regression and Likelihood , 2001 .

[35]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[36]  R. von Sachs,et al.  Smooth Design-Adapted Wavelets for Nonparametric Stochastic Regression , 2004 .

[37]  Stefan Vandewalle,et al.  A Stabilized Lifting Construction of Wavelets on Irregular Meshes on the Interval , 2003, SIAM J. Sci. Comput..

[38]  Michael Unser,et al.  Wavelet Applications in Signal and Image Processing III , 1994 .

[39]  K. J. Ray Liu,et al.  Denoising via adaptive lifting schemes , 2000, SPIE Optics + Photonics.

[40]  Guy P. Nason,et al.  Improving Prediction of Hydrophobic Segments along a Transmembrane Protein Sequence using Adaptive Multiscale Lifting , 2006, Multiscale Model. Simul..

[41]  R. V. Sachs,et al.  Nonparametric stochastic regression with design-adapted wavelets , 2001 .

[42]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[43]  Bernard W. Silverman,et al.  EbayesThresh: R Programs for Empirical Bayes Thresholding , 2005 .

[44]  Bernard W. Silverman,et al.  Multivariate nonparametric regression using lifting , 2004 .

[45]  G. Piella,et al.  Adaptive lifting schemes with perfect reconstruction , 2002, IEEE Trans. Signal Process..