Optical amplifiers transform long-distance lightwave telecommunications

Optical amplifiers and wavelength-multiplexing technology are transforming lightwave communications by providing cost-effective upgrades that will increase immensely the transmission capacity of long-distance telecommunications networks. A new generation of undersea cable systems using fiber optical amplifiers as repeaters has been developed for transoceanic applications, yielding a capacity almost ten times larger than conventional systems using opto-electronic regenerators. Terrestrial long-haul networks will benefit significantly from amplified wavelength-multiplexed transmission systems designed to access the large inherent bandwidth in the installed fiber. Successful deployment of these advanced systems requires a thorough understanding of optical amplifiers and the optical fiber medium, as their requirements interrelate through optical bandwidth, noise, dispersion, optical nonlinearities, and their impact on signal transmission. While the first commercial WDM amplified lightwave systems are deployed for point-to-point applications, optical transparency and wavelength multiplexing will be exploited for networking leading to the higher functionality and improved cost-effectiveness expected of photonic networks.

[1]  Yoshihisa Yamamoto,et al.  Noise and error rate performance of semiconductor laser amplifiers in PCM-IM optical transmission systems , 1980 .

[2]  L. Pierre,et al.  252 km repeaterless 10 Gb/s transmission demonstration , 1993, IEEE Photonics Technology Letters.

[3]  D. Marcuse,et al.  Low dispersion single-mode fiber transmission - The question of practical versus theoretical maximum transmission bandwidth , 1981, IEEE Journal of Quantum Electronics.

[4]  L. Mollenauer,et al.  Soliton propagation in long fibers with periodically compensated loss , 1985, Annual Meeting Optical Society of America.

[5]  Steven K. Korotky,et al.  2.488-Gb/s Unrepeatered Transmission over 529 km using Remotely Pumped Post- and Pre-Amplifiers, Forward Error Correction, and Dispersion Compensation , 1995 .

[6]  D. M. Spirit,et al.  Unrepeatered transmission over 80km standard fibre at 40Gbit/s , 1994 .

[7]  B. L. Patel,et al.  REPEATERLESS TRANSMISSION AT 10 Gb/s OVER 215 km OF DISPERSION SHIFTED FIBRE, AND 180 km OF STANDARD FIBRE , 1993 .

[8]  Dietrich Marcuse,et al.  Reduction of four-wave-mixing cross talk in WDM systems using unequally spaced channels , 1993 .

[9]  Jay R. Simpson,et al.  High-gain erbium-doped traveling-wave fiber amplifier , 1987 .

[10]  C. R. Giles,et al.  Modeling erbium-doped fiber amplifiers , 1991 .

[11]  N. Olsson Lightwave systems with optical amplifiers , 1989 .

[12]  Shigeyuki Akiba,et al.  9000 km, 5 Gb/s NRZ Transmission Experiment Using 274 Erbium-Doped Fiber-Amplifiers , 1992 .

[13]  D. Cotter Observation of stimulated Brillouin scattering in low-loss silica fibre at 1.3 μm , 1982 .

[14]  Robert W. Tkach,et al.  Repeaterless Transmission of 8 10-Gb/s Channels over 137 km (11 Tb/s-km) of Dispersion-Shifted Fiber , 1994 .

[15]  A.R. Chraplyvy,et al.  One-third terabit/s transmission through 150 km of dispersion-managed fiber , 1995, IEEE Photonics Technology Letters.

[16]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[17]  Kenneth O. Hill,et al.  cw three-wave mixing in single-mode optical fibers , 1978 .

[18]  N. Edagawa,et al.  459 km, 2.4 Gbit/s four wavelength multiplexing optical fibre transmission experiment using six Er-doped fibre amplifiers , 1990 .

[19]  C. A. Burrus,et al.  Quantum well interferometric modulator monolithically integrated with 1.55 mu m tunable distributed Bragg reflector laser , 1992 .

[20]  R. A. Lobbett,et al.  39.81 Gbits/s, 43.8 million-way WDM broadcast network with 527 km range , 1991 .

[21]  Steven K. Korotky,et al.  529 km unrepeatered transmission at 2.488 GBit/s using dispersion compensation, forward error correction, and remote post- and pre-amplifiers pumped by diode-pumped Raman lasers , 1995 .

[22]  Dietrich Marcuse Bit-error rate of lightwave systems at the zero-dispersion wavelength , 1991 .

[23]  A. Chraplyvy Limitations on lightwave communications imposed by optical-fiber nonlinearities , 1990 .

[24]  L. Mollenauer,et al.  Demonstration of error-free soliton transmission at 2.5 Gbit/s over more than 14000 km , 1991 .

[25]  J. Gordon,et al.  The sliding-frequency guiding filter: an improved form of soliton jitter control. , 1992, Optics letters.

[26]  Toshio Morioka,et al.  Time-division-multiplexed 100 Gbit/s, 200 km Optical Transmission Experiment using PLL Timing Extraction and All-optical Demultiplexing based on Polarization Insensitive Four-wave-mixing , 1994 .

[27]  Neal S. Bergano Undersea Lightwave Transmission Systems Using Er-doped Fiber Amplifiers , 1993 .

[28]  F. Forghieri,et al.  Repeaterless transmission of eight channels at 10 Gb/s over 137 km (11 Tb/s-km) of dispersion-shifted fiber using unequal channel spacing , 1994, IEEE Photonics Technology Letters.

[29]  B. Ainslie A review of the fabrication and properties of erbium-doped fibers for optical amplifiers , 1991 .

[30]  J. L. Gimlett,et al.  Dispersion compensation in 1310 nm-optimised SMFs using optical equaliser fibre, EDFAs and 1310/1550 nm WDM , 1992 .

[31]  Chinlon Lin,et al.  Self-phase modulation in silica optical fibers (A) , 1978 .

[32]  H. Haus,et al.  Soliton transmission control. , 1991, Optics letters.

[33]  Takamasa Imai,et al.  Over 10,000 km Straight Line Transmission System Experiment at 2.5 Gb / s Using In-Line Optical Amplifiers , 1992 .

[34]  J. F. Massicott,et al.  Efficient, high power, high gain, Er/sup 3+/ doped silica fibre amplifier , 1990 .

[35]  W. Miniscalco Erbium-doped glasses for fiber amplifiers at 1500 nm , 1991 .

[36]  D. Marcuse Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion , 1991 .

[37]  R. Stolen,et al.  Parametric amplification and frequency conversion in optical fibers , 1982 .

[38]  J.M. Wiesenfeld,et al.  Elliptical-core dual-mode fiber dispersion compensator , 1993, IEEE Photonics Technology Letters.

[39]  J.-M.P. Delavaux,et al.  A field demonstration of 20-Gb/s capacity transmission over 360 km of installed standard (non-DSF) fiber , 1995, IEEE Photonics Technology Letters.

[40]  Richard E. Wagner,et al.  Chromatic dispersion limitations in coherent lightwave transmission systems , 1988 .

[41]  Gregory Raybon,et al.  Widely tunable distributed Bragg reflector laser with an integrated electroabsorption modulator , 1992 .

[42]  N. S. Bergano,et al.  Polarization dispersion and principal states in a 147-km undersea lightwave cable , 1988 .

[43]  Craig D. Poole Dispersion Compensation in Lightwave Systems , 1993 .

[44]  R. M. Derosier,et al.  1420-km transmission of sixteen 2.5-Gb/s channels using silica-fiber-based EDFA repeaters , 1994, IEEE Photonics Technology Letters.

[45]  D. Marcuse,et al.  Effect of fiber nonlinearity on long-distance transmission , 1991 .

[46]  L. Pierre,et al.  252 km repeaterless 10 Gb/s transmission demonstration , 1993 .

[47]  N. S. Bergano,et al.  A 9000 km 5 Gb/s and 21,000 km 2.4 Gb/s Feasibility Demonstration of Transoceanic EDFA Systems Using a Circulating Loop , 1991 .

[48]  H. Haus,et al.  Random walk of coherently amplified solitons in optical fiber transmission. , 1986, Optics letters.

[49]  A. Chraplyvy,et al.  Fading in lightwave systems due to polarization-mode dispersion , 1990, IEEE Photonics Technology Letters.

[50]  Richard D. Gitlin,et al.  Electrical signal processing techniques in long-haul fiber-optic systems , 1990, IEEE Trans. Commun..

[51]  Peter K. Runge Undersea lightwave systems , 1992, AT&T Technical Journal.

[52]  R. Stolen,et al.  Chapter 5 – Nonlinear Properties of Optical Fibers , 1979 .

[53]  Dominique Bayart,et al.  Over 25-nm, 16 wavelength-multiplexed signal transmission through four fluoride-based fiber-amplifier cascade and 440 km standard fiber , 1994 .

[54]  David N. Payne,et al.  Efficient pump wavelengths of erbium-doped fibre optical amplifier , 1989 .

[55]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[56]  Daniel A. Fishman,et al.  Optical Amplifier System Design and Field Trial , 1992 .

[57]  Jay R. Simpson,et al.  Observation of collision induced temporary soliton carrier frequency shifts in ultra-long fiber transmission systems , 1991 .

[58]  E. Desurvire,et al.  Noise performance of erbium-doped fiber amplifier pumped at 1.49 mu m, and application to signal preamplification at 1.8 Gbit/s , 1989, IEEE Photonics Technology Letters.

[59]  Linn F. Mollenauer,et al.  Demonstration, using sliding-frequency guiding filters, of error-free soliton transmission over more than 20,000 km at 10 Gbit/s, single-channel, and over more than 13,000 km at 20 Gbit/s in a two-channel WDM , 1993 .

[60]  J. Gordon,et al.  Effects of fiber nonlinearities and amplifier spacing on ultra-long distance transmission , 1991 .

[61]  Takanori Okoshi,et al.  Suppression of Stimulated Brillouin Scattering and Brillouin Crosstalk by Frequency-Sweeping Spread-Spectrum Scheme , 1991 .

[62]  K. L. Walker,et al.  PMD Characterization of Production Cables for Evolving Lightwave Systems , 1993 .

[63]  A. R. Chraplyvy,et al.  Measurement of crossphase modulation in coherent wavelength-division multiplexing using injection lasers , 1984 .

[64]  L. Mollenauer,et al.  Demonstration, using sliding-frequency guiding filters, of error-free soliton transmission over more than 20 Mm at 10 Gbit/s, single channel, and over more than 13 Mm at 20 Gbit/s in a two-channel WDM , 1993 .

[65]  Nori Shibata,et al.  Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber , 1987 .

[66]  U. Koren,et al.  2.5 Gb/s transmission over 674 km at multiple wavelengths using a tunable DBR laser with an integrated electroabsorption modulator , 1993, IEEE Photonics Technology Letters.

[67]  R. Smith Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering. , 1972, Applied optics.

[68]  I. M. Jauncey,et al.  Low-noise erbium-doped fibre amplifier operating at 1.54μm , 1987 .

[69]  Anders Bjarklev,et al.  Noise and gain performance for an Er3+-doped fiber amplifier pumped at 980 nm or 1480 nm , 1991, Other Conferences.

[70]  H Kogelnik,et al.  Optical-pulse equalization of low-dispersion transmission in single-mode fibers in the 1.3 - 1.7-microm spectral region. , 1980, Optics letters.

[71]  L. D. Tzeng,et al.  2.488 Gb/s-318 km repeaterless transmission using erbium-doped fiber amplifiers in a direct-detection system , 1992, IEEE Photonics Technology Letters.

[72]  Linn F. Mollenauer,et al.  Demonstration of error-free soliton transmission over more than 15000 km at 5 Gbit/s, single-channel, and over more than 11000 km at 10 Gbit/s in two-channel WDM , 1992 .

[73]  A.R. Chraplyvy,et al.  End-to-end equalization experiments in amplified WDM lightwave systems , 1993, IEEE Photonics Technology Letters.

[74]  A. Hasegawa,et al.  Generation of asymptotically stable optical solitons and suppression of the Gordon-Haus effect. , 1992, Optics letters.

[75]  Steven K. Korotky,et al.  Soliton WDM Transmission of 8 X 2.5 Gb/s, error free over 10 Mm , 1995 .

[76]  C. D. Poole Dispersion compensation design for lightwave systems , 1993, Proceedings of LEOS '93.