Multi-scale Simulation Methodology for Stress Assessment in 3D IC: Effect of Die Stacking on Device Performance

Potential challenges with managing mechanical stress distributions and the consequent effects on device performance for advanced 3D integrated circuit (IC) technologies are outlined. A set of physics-based compact models for a multi-scale simulation, to assess the mechanical stress across the device layers in silicon chips stacked and packaged with the 3D through-silicon-via (TSV) technology, is proposed. A calibration technique based on fitting to measured stress components and electrical characteristics of the test-chip devices is presented. For model validation, high-resolution strain measurements in Si channels of the test-chip devices are needed. At the nanoscale, the transmission electron microscopy (TEM) is the only technique available for sub-10 nm strain measurements so far.