Factor Mapping and Metamodelling

In this work we present some techniques, within the realm of Global Sensitivity Analysis, which permit to address fundamental questions in term of model’s understanding. In particular we are interested in developing tools which allow to determine which factor (or group of factors) are most responsible for producing model outputs Y within or outside specified bounds ranking the importance of the various input factors in terms of their influence on the variation of Y . On the other hand, we look for representing in a direct way (graphically, analytically, etc.) the relationship between input factors {X1, . . . , Xk} and output Y in order to get a better understanding of the model itself.

[1]  Jack P. C. Kleijnen,et al.  Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..

[2]  Peter C. Young,et al.  State Dependent Parameter metamodelling and sensitivity analysis , 2007, Comput. Phys. Commun..

[3]  J. Kleijnen Design and Analysis of Simulation Experiments , 2007 .

[4]  Andrea Saltelli,et al.  An effective screening design for sensitivity analysis of large models , 2007, Environ. Model. Softw..

[5]  Jon C. Helton,et al.  Survey of sampling-based methods for uncertainty and sensitivity analysis , 2006, Reliab. Eng. Syst. Saf..

[6]  Florian Pappenberger,et al.  Sensitivity analysis based on regional splits and regression trees (SARS-RT) , 2006, Environ. Model. Softw..

[7]  Stefano Tarantola,et al.  Random balance designs for the estimation of first order global sensitivity indices , 2006, Reliab. Eng. Syst. Saf..

[8]  H. Rabitz,et al.  Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions. , 2006, The journal of physical chemistry. A.

[9]  Jon C. Helton,et al.  Multiple predictor smoothing methods for sensitivity analysis , 2005, Proceedings of the Winter Simulation Conference, 2005..

[10]  A. O'Hagan,et al.  Probabilistic sensitivity analysis of complex models: a Bayesian approach , 2004 .

[11]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[12]  H. Rabitz,et al.  Practical Approaches To Construct RS-HDMR Component Functions , 2002 .

[13]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[14]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[15]  Peter C. Young,et al.  The Identification and Estimation of Nonlinear Stochastic Systems , 2001 .

[16]  O Paladino,et al.  Robust stability and sensitivity of real controlled CSTRs , 2000 .

[17]  P. Young,et al.  Stochastic, Dynamic Modelling and Signal Processing: Time Variable and State Dependent Parameter Estimation , 2000 .

[18]  Stefan Sperlich,et al.  Generalized Additive Models , 2014 .

[19]  Peter C. Young,et al.  Data-based mechanistic modelling, generalised sensitivity and dominant mode analysis , 1999 .

[20]  Peter C. Young,et al.  Recursive and en-bloc approaches to signal extraction , 1999 .

[21]  E. Prescott,et al.  Postwar U.S. Business Cycles: An Empirical Investigation , 1997 .

[22]  Robert C. Spear,et al.  Large simulation models: calibration, uniqueness and goodness of fit , 1997 .

[23]  P. Young,et al.  Simplicity out of complexity in environmental modelling: Occam's razor revisited. , 1996 .

[24]  M. Ratto,et al.  Chaos and chemical reactor models: sensitivity of dynamics on parameters uncertainty , 1995 .

[25]  Kjell A. Doksum,et al.  Nonparametric Estimation of Global Functionals and a Measure of the Explanatory Power of Covariates in Regression , 1995 .

[26]  Nong Shang,et al.  Parameter uncertainty and interaction in complex environmental models , 1994 .

[27]  Massimiliano Giona,et al.  Bifurcation analysis and stability of a controlled CSTR , 1994 .

[28]  Terry Andres,et al.  Sensitivity analysis of model output: an investigation of new techniques , 1993 .

[29]  L. Pellegrini,et al.  Chaotic behaviour of a controlled CSTR , 1990 .

[30]  Peter C. Young,et al.  Recursive estimation and forecasting of non‐stationary time series , 1990 .

[31]  M. B. Beck,et al.  Water quality modeling: A review of the analysis of uncertainty , 1987 .

[32]  G. Hornberger,et al.  Approach to the preliminary analysis of environmental systems , 1981 .

[33]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[34]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[35]  Fred C. Schweppe,et al.  Evaluation of likelihood functions for Gaussian signals , 1965, IEEE Trans. Inf. Theory.