Hypervelocity Impact Testing of a Metallic Glass‐Stuffed Whipple Shield

In this work, hypervelocity impact tests up to 7 km · s−1 are used to compare the performance of Whipple shields integrated with layers of metallic glasses with a baseline target analogue of one of the shields similar to what is used on the International Space Station. The baseline target failed under the impact while the target utilizing metallic glass as a replacement for the fabric layers in the baseline passed the test. The paper postulates on the prospects of future implementation of metallic glasses as spacecraft debris shields.

[1]  A. M. Nolen,et al.  An investigation of metal matrix composites as shields for hypervelocity orbital debris impacts , 1995 .

[2]  Justin H. Kerr,et al.  Ballistic limit equations for spacecraft shielding , 2001 .

[3]  Mica Grujicic,et al.  Hypervelocity impact resistance of reinforced carbon–carbon/carbon–foam thermal protection systems , 2006 .

[4]  Eric L. Christiansen,et al.  Space Station MMOD Shielding , 2006 .

[5]  Frank Schäfer,et al.  Selecting enhanced space debris shields for manned spacecraft , 2006 .

[6]  Roberto Destefanis,et al.  Ballistic limit evaluation of advanced shielding using numerical simulations , 2001 .

[7]  M. Demetriou,et al.  Semi-solid induction forging of metallic glass matrix composites , 2009 .

[8]  Ronald P. Bernhard,et al.  Orbital debris as detected on exposed spacecraft , 1997 .

[9]  Eric L. Christiansen,et al.  Whipple shield performance in the shatter regime , 2011 .

[10]  C. Puillet,et al.  Hypervelocity impact on honeycomb target structures: Experiments and modeling , 2008 .

[11]  Andrew G. Glen,et al.  APPL , 2001 .

[12]  Justin H. Kerr,et al.  Projectile shape effects on shielding performance at 7 km/s and 11 km/s , 1997 .

[13]  Katrin Baumgartner,et al.  Orbital Debris A Technical Assessment , 2016 .

[14]  William P. Schonberg,et al.  Hypervelocity Impact Response of Honeycomb Sandwich Panels , 2010 .

[15]  Eric L. Christiansen,et al.  Performance of Whipple shields at impact velocities above 9 km/s , 2011 .

[16]  C. Veazey,et al.  Stochastic metallic-glass cellular structures exhibiting benchmark strength. , 2008, Physical review letters.

[17]  William P. Schonberg,et al.  Protecting Earth-orbiting spacecraft against micro-meteoroid/orbital debris impact damage using composite structural systems and materials: An overview , 2010 .

[18]  M. Demetriou,et al.  Metallic-glass-matrix composite structures with benchmark mechanical performance , 2010 .

[19]  Douglas C. Hofmann,et al.  Investigating Amorphous Metal Composite Architectures as Spacecraft Shielding , 2013 .

[20]  L. Dai,et al.  Amorphous alloy reinforced Whipple shield structure , 2012 .

[21]  Emma A. Taylor,et al.  Hypervelocity impact on carbon fibre reinforced plastic / aluminium honeycomb: Comparison with whipple bumper shields , 1999 .