The Valuation of American Options for a Class of Diffusion Processes

We present an integral equation approach for the valuation of American-style derivatives when the underlying asset price follows a general diffusion process and the interest rate is stochastic. Our contribution is fourfold. First, we show that the exercise region is determined by a single exercise boundary under very general conditions on the interest rate and the dividend yield. Second, based on this result, we derive a recursive integral equation for the exercise boundary and provide a parametric representation of the American option price. Third, we apply the results to models with stochastic volatility or stochastic interest rate, and to American bond options in one-factor models. For the cases studied, explicit parametric valuation formulas are obtained. Finally, we extend results on American capped options to general diffusion prices. Numerical schemes based on approximations of the optimal stopping time (such as approximations based on a lower bound, or on a combination of lower and upper bounds) are shown to be valid in this context.

[1]  D. Lamberton,et al.  Variational inequalities and the pricing of American options , 1990 .

[2]  M. Rubinstein. Implied Binomial Trees , 1994 .

[3]  San-Lin Chung,et al.  American option valuation under stochastic interest rates , 2000 .

[4]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[5]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[6]  David C. Emanuel,et al.  Further Results on the Constant Elasticity of Variance Call Option Pricing Model , 1982, Journal of Financial and Quantitative Analysis.

[7]  Mark Schroder Computing the Constant Elasticity of Variance Option Pricing Formula , 1989 .

[8]  Spiridon Penev,et al.  A Wiener Germ approximation of the noncentral chi square distribution and of its quantiles , 2000, Comput. Stat..

[9]  T. Ho,et al.  Stochastic Interest Rates: A Generalization of the Geske-Johnson Technique , 1996 .

[10]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[11]  M. Broadie,et al.  American Capped Call Options on Dividend-Paying Assets , 1995 .

[12]  A. G. Fakeev Optimal Stopping of a Markov Process , 1971 .

[13]  P. Boyle,et al.  Quadratic Interest Rate Models as Approximations to Effective Rate Models , 1999 .

[14]  Marek Rutkowski THE EARLY EXERCISE PREMIUM REPRESENTATION OF FOREIGN MARKET AMERICAN OPTIONS1 , 1994 .

[15]  James B. Wiggins Option values under stochastic volatility: Theory and empirical estimates , 1987 .

[16]  M. Broadie,et al.  American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods , 1996 .

[17]  J R Lynn,et al.  Finite-horizon optimal stopping, obstacle problems and the shape of the continuation region , 1992 .

[18]  Marti G. Subrahmanyam,et al.  Pricing and Hedging American Options: A Recursive Integration Method , 1995 .

[19]  J. Detemple Série Scientifique Scientific Series American Options: Symmetry Properties , 2022 .

[21]  Bruce D. Grundy,et al.  General Properties of Option Prices , 1996 .

[22]  Ton Vorst,et al.  A Pricing Model for American Options with Stochastic Interest Rates , 1998 .

[23]  G. Constantinides A Theory of the Nominal Term Structure of Interest Rates , 1992 .

[24]  Eduardo S. Schwartz The valuation of warrants: Implementing a new approach , 1977 .

[25]  I. Kim The Analytic Valuation of American Options , 1990 .

[26]  H. Johnson,et al.  The American Put Option Valued Analytically , 1984 .

[27]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[28]  I. Kim,et al.  An alternative approach to the valuation of American options and applications , 1996 .

[29]  M. Subrahmanyam,et al.  The Valuation of American Barrier Options Using the Decomposition Technique , 1998 .

[30]  Eduardo S. Schwartz,et al.  The Valuation of American Put Options , 1977 .

[31]  B. Noble,et al.  Methods Based on the Wiener-Hopf Technique. , 1960 .

[32]  P. Carr,et al.  ALTERNATIVE CHARACTERIZATIONS OF AMERICAN PUT OPTIONS , 1992 .

[33]  S. Jacka Optimal Stopping and the American Put , 1991 .

[34]  David Hobson,et al.  Robust hedging of the lookback option , 1998, Finance Stochastics.

[35]  D. Beaglehole,et al.  General Solutions of Some Interest Rate-Contingent Claim Pricing Equations , 1991 .

[36]  J. Cox The Constant Elasticity of Variance Option Pricing Model , 1996 .

[37]  S. Shreve,et al.  Robustness of the Black and Scholes Formula , 1998 .

[38]  Robert J. Elliott,et al.  ANAYTICAL SOLUTIONS FOR THE PRICING OF AMERICAN BOND AND YIELD OPTIONS1 , 1993 .

[39]  Mark D. Schroder,et al.  Changes of Numeraire for Pricing Futures, Forwards, and Options , 1999 .

[40]  Herb Johnson,et al.  A Simple and Numerically Efficient Valuation Method for American Puts Using a Modified Geske‐Johnson Approach , 1992 .

[41]  James N. Bodurtha,et al.  Discrete-Time Valuation of American Options with Stochastic Interest Rates , 1995 .