Hard Modeling Methods for the Curve Resolution of Data from Liquid Chromatography with a Diode Array Detector and On-Flow Liquid Chromatography with Nuclear Magnetic Resonance Spectroscopy

Hard modeling methods have been performed on data from high-performance liquid chromatography with a diode array detector (LC-DAD) and on-flow liquid chromatography with 1H nuclear magnetic spectroscopy (LC-NMR). Four methods have been used to optimize parameters to model concentration profiles, three of which belong to classical optimization methods (the simplex method of Nelder-Mead, sequential quadratic programming approach, and Levenberg-Marquardt method), and the fourth is the application of genetic algorithms using real-value encoding. Only classical methods worked well for LC-DAD data, while all of the methods produced good results when LC-NMR data were divided into small spectral windows of peak clusters and parameters were optimized over each window.

[1]  R. Brereton,et al.  Resolution of on‐flow LC/NMR data by multivariate methods — a comparison , 2002 .

[2]  R. Tauler,et al.  Multivariate curve resolution applied to liquid chromatography—diode array detection , 1993 .

[3]  J. R. Torres-Lapasió,et al.  Resolution assessment and performance of several organic modifiers in hybrid micellar liquid chromatography , 2001 .

[4]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[5]  Desire L. Massart,et al.  Resolution of multicomponent overlapped peaks by the orthogonal projection approach, evolving factor analysis and window factor analysis , 1997 .

[6]  Zonghai Chen,et al.  Resolution of multicomponent overlapping chromatogram using an immune algorithm and genetic algorithm , 2000 .

[7]  A Pappa-Louisi,et al.  On the use of genetic algorithms for response surface modeling in high-performance liquid chromatography and their combination with the Microsoft Solver. , 2002, Journal of chromatography. A.

[8]  Paul Geladi,et al.  Chemometrics in spectroscopy. Part 1. Classical chemometrics , 2003 .

[9]  R. Tauler,et al.  Multivariate resolution of NMR labile signals by means of hard- and soft-modelling methods , 2003 .

[10]  J. R. Torres-Lapasió,et al.  A hybrid genetic algorithm with local search: I. Discrete variables: optimisation of complementary mobile phases , 2001 .

[11]  D. B. Hibbert Genetic algorithms in chemistry , 1993 .

[12]  R. Leardi Genetic algorithms in chemometrics and chemistry: a review , 2001 .

[13]  M. C. García-Alvarez-Coque,et al.  Prediction of peak shape as a function of retention in reversed-phase liquid chromatography. , 2004, Journal of chromatography. A.

[14]  S. Deming,et al.  Simplex optimization of analytical chemical methods , 1974 .

[15]  J. Li Development and evaluation of flexible empirical peak functions for processing chromatographic peaks. , 1997, Analytical chemistry.

[16]  C. B. Lucasius,et al.  Understanding and using genetic algorithms Part 1. Concepts, properties and context , 1993 .

[17]  M. C. García-Alvarez-Coque,et al.  Parabolic-Lorentzian modified Gaussian model for describing and deconvolving chromatographic peaks. , 2002, Journal of chromatography. A.

[18]  T. Coleman,et al.  On the Convergence of Reflective Newton Methods for Large-scale Nonlinear Minimization Subject to Bounds , 1992 .

[19]  Richard G. Brereton,et al.  Principal component analysis in liquid chromatography proton nuclear magnetic resonance: differentiation of three regio-isomers , 2001 .

[20]  A Pappa-Louisi,et al.  On the equations describing chromatographic peaks and the problem of the deconvolution of overlapped peaks. , 2001, Journal of chromatography. A.

[21]  D. Massart,et al.  Orthogonal projection approach applied to peak purity assessment. , 1996, Analytical chemistry.

[22]  E. A. Sylvestre,et al.  Self Modeling Curve Resolution , 1971 .

[23]  Jianwei Li Comparison of the capability of peak functions in describing real chromatographic peaks. , 2002, Journal of chromatography. A.

[24]  R. Brereton,et al.  Determination of number of significant components and key variables using genetic algorithms in liquid chromatography-nuclear magnetic resonance spectroscopy and liquid chromatography-diode array detection , 2006 .

[25]  H. Haario,et al.  COMBINING SOFT AND HARD MODELLING IN CHEMICAL KINETIC MODELS , 1998 .

[26]  Desire L. Massart,et al.  Algorithm for the assessment of peak purity in liquid chromatography with photodiode-array detection , 1994 .

[27]  G. Fonrodona,et al.  Study of solvent effects on the acid–base behaviour of adenine, adenosine 3′,5′-cyclic monophosphate and poly(adenylic) acid in acetonitrile–water mixtures using hard-modelling and soft-modelling approaches , 2002 .

[28]  J. R. Torres-Lapasió,et al.  A hybrid genetic algorithm with local search , 2001 .

[29]  R. Brereton,et al.  Resolution of on-flow liquid chromatography proton nuclear magnetic resonance using canonical correlation and constrained linear regression , 2002 .

[30]  R. Brereton,et al.  Evaluation of chemometric methods for determining the number and position of components in high-performance liquid chromatography detected by diode array detector and on-flow 1H nuclear magnetic resonance spectroscopy , 2003 .

[31]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[32]  Romà Tauler,et al.  Fast chromatography of complex biocide mixtures using diode array detection and multivariate curve resolution , 2004 .

[33]  Joel M. Harris,et al.  MULTIWAVELENGTH DETECTION AND REITERATIVE LEAST SQUARES RESOLUTION OF OVERLAPPED LIQUID CHROMATOGRAPHIC PEAKS. , 1985 .

[34]  B. Kowalski,et al.  Quantitative Resolution of Fused Chromatographic Peaks in Gas Chromatography/Mass Spectrometry. , 1982 .

[35]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[36]  D. Massart,et al.  Resolution of Complex Liquid Chromatography−Fourier Transform Infrared Spectroscopy Data , 1997 .

[37]  Z. Pápai,et al.  Determination of chromatographic peak parameters by non-linear curve fitting using statistical moments. , 2002, The Analyst.

[38]  Romà Tauler,et al.  Application of a novel resolution approach combining soft- and hard-modelling features to investigate temperature-dependent kinetic processes , 2001 .

[39]  J. Grimalt,et al.  Resolution of overlapping peaks in gas and liquid chromatography , 1989 .

[40]  J. R. Torres-Lapasió,et al.  Resolution of multicomponent peaks by orthogonal projection approach, positive matrix factorization and alternating least squares , 2000 .

[41]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[42]  R. Brereton,et al.  Application of evolving factor analysis to on-flow LC-NMR data using spectral windows , 2005 .

[43]  M. Maeder,et al.  Nonlinear least-squares fitting of multivariate absorption data , 1990 .

[44]  Joel M. Harris,et al.  Resolution of multicomponent fluorescence spectra by an emission wavelength-decay time data matrix , 1981 .

[45]  Richard G. Brereton,et al.  Determination of the Number of Significant Components in Liquid Chromatography Nuclear Magnetic Resonance Spectroscopy , 2004 .

[46]  V B Di Marco,et al.  Mathematical functions for the representation of chromatographic peaks. , 2001, Journal of chromatography. A.

[47]  J. Toft,et al.  Non-linear curve fitting of bilinear data using orthogonal projections for rank analysis. Applications to gas chromatography / infrared spectrometry and variable temperature infrared studies , 1994 .

[48]  C. B. Lucasius,et al.  Understanding and using genetic algorithms Part 2. Representation, configuration and hybridization , 1994 .

[49]  J. R. Torres-Lapasió,et al.  A model for the description, simulation, and deconvolution of skewed chromatographic peaks , 1997 .

[50]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..